首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   29篇
  2018年   3篇
  2016年   4篇
  2015年   9篇
  2014年   13篇
  2013年   19篇
  2012年   13篇
  2011年   19篇
  2010年   10篇
  2009年   5篇
  2008年   12篇
  2007年   14篇
  2006年   14篇
  2005年   9篇
  2004年   10篇
  2003年   10篇
  2002年   18篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1985年   4篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1971年   7篇
  1970年   11篇
  1969年   5篇
  1968年   4篇
  1967年   6篇
  1966年   3篇
  1965年   4篇
  1964年   3篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
61.
Transected axons are often assumed to seal by collapse and fusion of the axolemmal leaflets at their cut ends. Using photomicroscopy and electronmicroscopy of fixed tissues and differential interference contrast and confocal fluorescence imaging of living tissues, we examined the proximal and distal cut ends of the pseudomyelinated medial giant axon of the earthworm, Lumbricus terrestris, at 5–60 min post-transection in physiological salines and Ca2+-free salines. In physiological salines, the axolemmal leaflets at the cut ends do not completely collapse, much less fuse, for at least 60 min post-transection. In fact, the axolemma is disrupted for 20–100 μm from the cut end at 5–60 min post-transection. However, a barrier to dye diffusion is observed when hydrophilic or styryl dyes are placed in the bath at 15–30 min post-transection. At 30–60 min post-transection, this barrier to dye diffusion near the cut end is formed amid an accumulation of some single-layered and many multilayered vesicles and other membranous material, much of which resembles delaminated pseudomyelin of the glial sheath. In Ca2+-free salines, this single and multilayered membranous material does not accumulate, and a dye diffusion barrier is not observed. These and other data are consistent with the hypothesis that plasmalemmal damage in eukaryotic cells is repaired by Ca2+-induced vesicles arising from invaginations or evaginations of membranes of various origin which form junctional contacts or fuse with each other and/or the plasmalemma. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 945–960, 1997  相似文献   
62.
63.
We investigated the functional and structural implications of SNAP25 having two SNARE motifs (SN1 and SN2). A membrane-bound, intramolecular FRET probe was constructed to report on the folding of N-terminal SN1 and C-terminal SN2 in living cells. Membrane-bound constructs containing either or both SNARE motifs were also singly labeled with donor or acceptor fluorophores. Interaction of probes with other SNAREs was monitored by the formation of SDS-resistant complexes and by changes in FRET measured in vitro using spectroscopy and in the plasma membrane of living cells using TIRF microscopy. The probes formed the predicted SDS-resistant SNARE complexes. FRET measurements revealed that syntaxin induced a close association of the N-termini of SN1 and SN2. This association required that the SNARE motifs reside in the same molecule. Unexpectedly, the syntaxin-induced FRET was prevented by VAMP. Both full-length SNAP25 constructs and the combination of its separated, membrane-bound constituent chains supported secretion in permeabilized chromaffin cells that had been allowed to rundown. However, only full-length SNAP25 constructs enabled robust secretion from intact cells or permeabilized cells before rundown. The experiments suggest that the bidentate structure permits specific conformations in complexes with syntaxin and VAMP and facilitates the function of SN1 and SN2 in exocytosis.  相似文献   
64.
Lamina-associated polypeptide (LAP) 2alpha is a chromatin-associated protein that binds A-type lamins. Mutations in both LAP2alpha and A-type lamins are linked to human diseases called laminopathies, but the molecular mechanisms are poorly understood. The A-type lamin-LAP2alpha complex interacts with and regulates retinoblastoma protein (pRb), but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin-LAP2alpha complex with the use of LAP2alpha-deficient mice. We show that LAP2alpha loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model in which LAP2alpha defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues.  相似文献   
65.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   
66.
Tryptophanase (tryptophan indole-lyase, Tnase, EC 4.1.99.1), a bacterial enzyme with no counterpart in eukaryotic cells, produces from L-tryptophan pyruvate, ammonia and indole. It was recently suggested that indole signaling plays an important role in the stable maintenance of multicopy plasmids. In addition, Tnase was shown to be capable of binding Rcd, a short RNA molecule involved in resolution of plasmid multimers. Binding of Rcd increases the affinity of Tnase for tryptophan, and it was proposed that indole is involved in bacteria multiplication and biofilm formation. Biofilm-associated bacteria may cause serious infections, and biofilm contamination of equipment and food, may result in expensive consequences. Thus, optimal and specific factors that interact with Tnase can be used as a tool to study the role of this multifunctional enzyme as well as antibacterial agents that may affect biofilm formation. Most known quasi-substrates inhibit Tnase at the mM range. In the present work, the mode of Tnase inhibition by the following compounds and the corresponding Ki values were: S-phenylbenzoquinone-L-tryptophan, uncompetitively, 101 microM; alpha-amino-2-(9,10-anthraquinone)-propanoic acid, noncompetitively, 174 microM; L-tryptophane-ethylester, competitively, 52 microM; N-acetyl-L-tryptophan, noncompetitively, 48 microM. S-phenylbenzoquinone-L-tryptophan and alpha-amino-2-(9,10-anthraquinone)-propanoic acid were newly synthesized.  相似文献   
67.
3-[6-(2-Dimethylamino-1-imidazol-1-yl-butyl)-naphthalen-2-yloxy]-2,2-dimethyl-propionic acid and analogs were designed and synthesized as highly potent and selective CYP26 inhibitors, serving as retinoic acid metabolic blocking agents (RAMBAs), with demonstrated in vivo efficacy to increase the half-life of exogenous atRA.  相似文献   
68.
NOSs (nitric oxide synthases) catalyse the oxidation of L-arginine to L-citrulline and nitric oxide via the intermediate NOHA (N(ω)-hydroxy-L-arginine). This intermediate is rapidly converted further, but to a small extent can also be liberated from the active site of NOSs and act as a transportable precursor of nitric oxide or potent physiological inhibitor of arginases. Thus its formation is of enormous importance for the nitric-oxide-generating system. It has also been shown that NOHA is reduced by microsomes and mitochondria to L-arginine. In the present study, we show for the first time that both human isoforms of the newly identified mARC (mitochondrial amidoxime reducing component) enhance the rate of reduction of NOHA, in the presence of NADH cytochrome b? reductase and cytochrome b?, by more than 500-fold. Consequently, these results provide the first hints that mARC might be involved in mitochondrial NOHA reduction and could be of physiological significance in affecting endogenous nitric oxide levels. Possibly, this reduction represents another regulative mechanism in the complex regulation of nitric oxide biosynthesis, considering a mitochondrial NOS has been identified. Moreover, this reduction is not restricted to NOHA since the analogous arginase inhibitor NHAM (N(ω)-hydroxy-N(δ)-methyl-L-arginine) is also reduced by this system.  相似文献   
69.

Background

A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients.

Methods

We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures.

Results

Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts.

Conclusion

In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号