首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1101篇
  免费   100篇
  1201篇
  2024年   3篇
  2023年   8篇
  2022年   21篇
  2021年   42篇
  2020年   29篇
  2019年   31篇
  2018年   46篇
  2017年   43篇
  2016年   51篇
  2015年   82篇
  2014年   79篇
  2013年   89篇
  2012年   107篇
  2011年   104篇
  2010年   72篇
  2009年   43篇
  2008年   64篇
  2007年   53篇
  2006年   42篇
  2005年   41篇
  2004年   40篇
  2003年   32篇
  2002年   29篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   6篇
  1993年   1篇
  1992年   7篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有1201条查询结果,搜索用时 20 毫秒
41.
Habitat degradation and fragmentation are expected to reduce seed dispersal rates by reducing fruit availability as well as the movement and abundance of frugivores. These deleterious impacts may also interact with each other at different spatial scales, leading to nonlinear effects of fruit abundance on seed dispersal. In this study we assessed whether the degradation and fragmentation of southern Chilean forests had the potential to restrict seed dispersal the lingue (Persea lingue) tree, a fleshy-fruited tree species. Of five frugivore bird species, the austral thrush (Turdus falcklandii) and the fire-eyed diucon (Xolmis pyrope) were the only legitimate seed dispersers as well as being the most abundant species visiting lingue trees. The results showed little or no direct effect of habitat fragmentation on seed dispersal estimates, possibly because the assemblage of frugivore birds was comprised habitat-generalist species. Instead, the number of fruits removed per focal tree exhibited an enhanced response to crop size, but only in the more connected fragments. In the fruit-richer fragment networks, there was an increased fragment-size effect on the proportion of fruits removed in comparison to fruit-poor networks in which the fragment size effect was spurious. We suggest that such nonlinear effects are widespread in fragmented forest regions, resulting from the link between the spatial scales over which frugivores sample resources and the spatial heterogeneity in fruiting resources caused by habitat fragmentation and degradation.  相似文献   
42.
The addition of nontemplated (N) nucleotides to coding ends in V(D)J recombination is the result of the action of a unique DNA polymerase, TdT. Although N-nucleotide addition by TdT plays a critical role in the generation of a diverse repertoire of Ag receptor genes, the mechanism by which TdT acts remains unclear. We conducted a structure-function analysis of the murine TdT protein to determine the roles of individual structural motifs that have been implicated in protein-protein and protein-DNA interactions important for TdT function in vivo. This analysis demonstrates that the N-terminal portion of TdT, including the BRCA-1 C-terminal (BRCT) domain, is not required for TdT activity, although the BRCT domain clearly contributes quantitatively to N-nucleotide addition activity. The second helix-hairpin-helix domain of TdT, but not the first, is required for activity. Deletional analysis also suggested that the entire C-terminal region of TdT is necessary for N-nucleotide addition in vivo. The long isoform of TdT was found to reduce N-nucleotide addition by the short form of TdT, but did not increase nucleotide deletion from coding ends in either human or rodent nonlymphoid cells. We consider these results in light of the recently reported structure of the catalytic region of TdT.  相似文献   
43.
OBJECTIVE: To evaluate the presence of basement membrane stromal material in fine needle aspiration (FNA) and scrape cytologic specimens from patients with clear cell carcinoma (CCC) of the female genital tract. STUDY DESIGN: The study group consisted of 6 patients with CCC (5 ovarian and 1 cervical). Four samples corresponded to FNA specimens and 3 to scrape material obtained during intraoperative consultation for ovarian tumors. FNA was performed on a pelvic recurrence and on liver, pulmonary and lymph node metastases. The 6 cases had a complete histopathologic study. RESULTS: In addition to large, clear cells, all cases showed basement membrane stromal material that assumed several forms. The most common was globular, hyaline structures, either naked or surrounded by neoplastic epithelial cells ("raspberry bodies"). Other fragments were larger, with several spherules and elongated prolongations. Scrape material showed stromal material resembling reduplicated basement membrane material. In Diff-Quik-stained smears (QCA, Tarragana, Spain) it showed metachromatic staining with a pink to purple color. Its recognition on Papanicolaou-stained smears was more difficult since it did not stain or was gray. CONCLUSION: Basement membrane stromal material and, more precisely, "raspberry bodies," are a characteristic cytologic feature of CCC of the female genital tract. The combination of clear, atypical cells and basement membrane stroma is highly specific to this neoplasm and can be observed not only in exfoliative specimens but also in FNA and scrape samples.  相似文献   
44.
A unique opportunity for the study of the role of serial passage and cross-species transmission was offered by a series of experiments carried out at the Tulane National Primate Research Center in 1990. To develop an animal model for leprosy, three black mangabeys (BkMs) (Lophocebus aterrimus) were inoculated with lepromatous tissue that had been serially passaged in four sooty mangabeys (SMs) (Cercocebus atys). All three BkMs became infected with simian immunodeficiency virus from SMs (SIVsm) by day 30 postinoculation (p.i.) with lepromatous tissue. One (BkMG140) died 2 years p.i. from causes unrelated to SIV, one (BkMG139) survived for 10 years, whereas the third (BkMG138) was euthanized with AIDS after 5 years. Histopathology revealed a high number of giant cells in tissues from BkMG138, but no SIV-related lesions were found in the remaining two BkMs. Four-color immunofluorescence revealed high levels of SIVsm associated with both giant cells and T lymphocytes in BkMG138 and no detectable SIV in the remaining two. Serum viral load (VL) showed a significant increase (>1 log) during the late stage of the disease in BkMG138, as opposed to a continuous decline in VL in the remaining two BkMs. With the progression to AIDS, neopterin levels increased in BkMG138. This study took on new significance when phylogenetic analysis unexpectedly showed that all four serially inoculated SMs were infected with different SIVsm lineages prior to the beginning of the experiment. Furthermore, the strain infecting the BkMs originated from the last SM in the series. Therefore, the virus infecting BkMs has not been serially passaged. In conclusion, we present the first compelling evidence that direct cross-species transmission of SIV may induce AIDS in heterologous African nonhuman primate (NHP) species. The results showed that cross-species-transmitted SIVsm was well controlled in two of three BkMs for 2 and 10 years, respectively. Finally, this case of AIDS in an African monkey suggests that the dogma of SIV nonpathogenicity in African NHP hosts should be reconsidered.  相似文献   
45.

Background

Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states.

Methodology/Principal Findings

The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability.

Conclusions/Significance

For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.  相似文献   
46.

Background

Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca2+ release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood.

Results

In the present study we investigated insulin-dependent mitochondrial Ca2+ signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca2+-fluorescent probes we showed that insulin increases mitochondrial Ca2+ levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca2+ uniporter, as well as by siRNA-dependent mitochondrial Ca2+ uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca2+ uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca2+ uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling.

Conclusions

Mitochondrial Ca2+ uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
  相似文献   
47.
Roads and road-building are among the most important environmental impacts on forests near urban areas, but their effects on ecosystem processes and species distributions remain poorly known. Termites are the primary decomposer organisms in tropical forests and their spatial distribution is strongly affected by vegetation and soil structure. We studied the impacts of road construction on termite community structure in an Amazonian forest fragment near Manaus, Brazil. One leading question was whether the fragment under study was large enough to maintain the termite species pool present in nearby continuous forests. We also asked how soil moisture and canopy openness varied with proximity to roads, and whether these changes were associated with changes in termite species richness and composition in the fragment. While the forest fragment had a termite composition very similar to that of continuous forests, roads caused important changes in soil moisture and canopy openness, especially when close to forest edges. At distances of up to 81 m from roads, changes in soil moisture were significantly related to changes in termite species composition, but there was no correlation between canopy openness and species richness or composition. These results suggest that fragmentation caused by roads impacts termites in a different and less damaging manner than fragmentation caused by other kinds of degradation, and that even fragments bisected by roads can support very diverse communities and even undescribed taxa of termites. We conclude that a buffer zone should be established for conservation purposes in the reserves surrounded by roads.  相似文献   
48.
Acrylonitrile (AN) is a vinyl monomer used in the production of synthetic fibers, rubber and plastics. AN is acutely toxic but its mechanism of toxicity remains to be established. AN is metabolized to cyanide in vivo but cyanide production alone cannot explain acute AN toxicity. Previous work in our laboratory has shown that AN can alkylate highly reactive cysteine residues in proteins. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a critical enzyme involved in glycolysis, has a catalytically active cysteine 149 in its active site. We report that AN irreversibly inhibits GAPDH with second-order rate constants, at pH 7.4, of 3.7 and 9.2 M−1 s−1 at 25 and 37 °C, respectively. A combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and electrospray ionization–mass spectrometry–mass spectrometry (ESI–MS–MS) was used to show that AN inactivates GAPDH by covalently binding to cysteine 149 in the active site of the enzyme. Inactivation of GAPDH by AN would be expected to impair glycolytic ATP production and when coupled with the inhibition of mitochondrial ATP synthesis by the AN metabolite cyanide would result in metabolic arrest. The brain can withstand metabolic arrest for only a few minutes thus these combined actions may account for the acute toxicity of AN in vivo.  相似文献   
49.
A vector based on Semliki Forest virus (SFV) expressing high levels of interleukin-12 (SFV-enhIL-12) has previously demonstrated potent antitumoral efficacy in small rodents with hepatocellular carcinoma (HCC) induced by transplantation of tumor cells. In the present study, the infectivity and antitumoral/antiviral effects of SFV vectors were evaluated in the clinically more relevant woodchuck model, in which primary HCC is induced by chronic infection with woodchuck hepatitis virus (WHV). Intratumoral injection of SFV vectors expressing luciferase or IL-12 resulted in high reporter gene activity within tumors and cytokine secretion into serum, respectively, demonstrating that SFV vectors infect woodchuck tumor cells. For evaluating antitumoral efficacy, woodchuck tumors were injected with increasing doses of SFV-enhIL-12, and tumor size was measured by ultrasonography following treatment. In five (83%) of six woodchucks, a dose-dependent, partial tumor remission was observed, with reductions in tumor volume of up to 80%, but tumor growth was restored thereafter. Intratumoral treatment further produced transient changes in WHV viremia and antigenemia, with ≥1.5-log10 reductions in serum WHV DNA in half of the woodchucks. Antitumoral and antiviral effects were associated with T-cell responses to tumor and WHV antigens and with expression of CD4 and CD8 markers, gamma interferon, and tumor necrosis factor alpha in peripheral blood mononuclear cells, suggesting that immune responses against WHV and HCC had been induced. These experimental observations suggest that intratumoral administration of SFV-enhIL-12 may represent a strategy for treatment of chronic HBV infection and associated HCC in humans but indicate that this approach could benefit from further improvements.Hepatocellular carcinoma (HCC) is a major public health problem worldwide, representing the fifth most common type of cancer. HCC is also the third leading cause of cancer-related death, mainly because only surgical and local ablative therapeutic options have shown efficacy in patients with this type of cancer (21). Approximately 80% of all HCC cases are attributed to chronic infection with hepatitis C virus and/or hepatitis B virus (HBV). Chronic carriers of HBV have a greater than 100-fold-increased relative risk of developing HCC compared to HBV-uninfected humans, with an annual incidence rate of 2 to 6% in cirrhotic patients. The high incidence of HCC, together with its poor prognosis and limited therapeutic options, warrants the development of new treatment strategies for this disease.There is increasing evidence that stimulation of the immune system for subsequent recognition and killing of tumor cells may be a valuable treatment option for liver cancer. In general, HCC appears to be an attractive target for immunotherapy because cases of spontaneous tumor regression have been reported, HCC is often infiltrated with lymphocytes, and HCC-associated proteins such as alpha-fetoprotein may be used as targets for immune-mediated killing of tumors (5, 49).A promising strategy to stimulate the deficient antitumoral immune response is based on the transfer and subsequent expression of immunostimulatory genes in tumor cells using viral or nonviral delivery vectors. One of the most effective immunostimulatory cytokines is interleukin-12 (IL-12), a protein usually expressed by macrophages and dendritic cells. IL-12 has been demonstrated to induce strong antitumoral effects that are mediated by the stimulation of T-helper cell type 1 (Th1) responses, including the activation of cytolytic T lymphocytes (CTL) and natural killer cells, and by the inhibition of angiognesis (48, 50). All of these effects are dependent on the production of gamma interferon (IFN-γ). Viral vectors that are based on adenovirus have been used to deliver IL-12 into several animal models with transplantable HCC, resulting in a localized expression of this cytokine and usually leading to antitumoral effects (3, 14, 37). However, and despite successful treatment of HCC in preclinical studies, a phase I clinical trial with a first-generation adenoviral vector for delivery and expression of IL-12 in patients with primary and metastatic liver cancer produced only a modest antitumoral effect (41). This poor response was probably due to the low and transient IL-12 expression in tumors. These results in humans indicated a need for vectors with higher potency and for preclinical testing in relevant models of HCC (i.e., large animals with spontaneous tumors).Vectors based on Semliki Forest virus (SFV), a member of the alphavirus group, are highly efficient in inducing antitumoral responses in a variety of animal models (2, 9, 10, 39, 44, 53). The SFV vector used in the present study is based on a viral RNA genome in which the region coding for the structural proteins has been replaced by a heterologous gene (24). Recombinant SFV RNA can be transcribed in vitro and transfected into cells, resulting in viral replication and subsequent production of a subgenomic RNA from which the heterologous protein is expressed at very high levels. Recombinant SFV RNA can be packaged into viral particles (vp) by cotransfecting it into cells together with two helper RNAs coding for the capsid and the envelope proteins (43). Compared to adenoviral vectors expressing IL-12, tumor treatment with SFV vectors expressing the same cytokine resulted in greater antitumoral effects in a murine colon adenocarcinoma model and also in a rat orthotopic HCC model (16, 39). The greater antitumoral effect mediated by SFV vectors has been attributed to the higher expression of IL-12 and to the induction of apoptosis caused by SFV replication within tumor cells. Apoptosis leads to the release of tumor antigens that can be taken up by antigen-presenting cells, thereby potentiating the antitumoral response induced by IL-12 (54). Furthermore, SFV vectors have low immunogenicity when delivered intratumorally, allowing repetitive administrations into the same tumor, which is not possible with adenoviral vectors (38).In the present study, the antitumoral efficacy of an SFV vector expressing IL-12 (SFV-enhIL-12) was investigated in woodchucks with HCC. The Eastern woodchuck (Marmota monax) is frequently infected with the woodchuck hepatitis virus (WHV), which is closely related to the human HBV in its structure, genomic organization, mechanism of replication, and course of infection (29). The woodchuck has been used as a mammalian model for research on HBV, including the pathogenesis of acute and chronic HBV infection, and for preclinical evaluation of the safety and efficacy of candidate antiviral drugs and therapeutic immunomodulators for the treatment of chronic HBV infection (29) and prevention of HCC (47).All woodchucks chronically infected with WHV as neonates develop HCC, and the median time for tumor appearance is 24 months of age (34, 47). After identification of HCC, the median survival time of woodchucks is 6 months, a situation similar to that for patients with HCC. In addition, WHV-induced hepatocarcinogenesis shows strong similarity to HBV-induced carcinogenesis in humans (34, 47). These features of HCC that are associated with persistent hepatitis virus infection make the woodchuck model unique compared to other animal models, in which HCC is induced by a chemical carcinogen or by transplantation of established tumor cell lines into immune-deficient or immune-compatible hosts. Woodchucks with large liver tumors that acquire malignant characteristics in a stepwise process similar to HCC in humans are an attractive and suitable model for the preclinical evaluation of new treatment strategies for HBV-induced HCC in humans (47).The antitumoral efficacy of a SFV vector expressing high levels of IL-12 (SFV-enhIL-12) was investigated in six woodchucks with established chronic WHV infection and primary HCC. The results demonstrate that SFV-delivered IL-12 expression produced a dose-dependent, partial tumor remission that was associated with a general activation of cellular immune responses against HCC. The antitumoral activity, in addition to an antiviral activity against WHV, and the favorable safety profile in woodchucks suggest that a therapeutic approach based on SFV-enhIL-12 may represent a treatment strategy for HCC in patients with chronic HBV infection, but the overall results also indicate that this approach needs further improvement for inducing a complete tumor remission.  相似文献   
50.
Fas and Fas ligand (FasL) are the main genes that control cell death in the immune system. Indeed, they are crucial for the regulation of T lymphocyte homeostasis because they can influence cell proliferation. A strong debate exists on the importance of Fas/FasL system during HIV infection, which is characterized by the loss of CD4+ T cells directly, or indirectly, caused by the virus. To investigate whether the genetic background of the host plays a role in the immunoreconstitution, we studied the influence of different Fas and FasL polymorphisms on CD4+ T lymphocyte count and plasma viral load following initiation of highly active antiretroviral therapy (HAART) in drug-naïve HIV+ patients. We studied 131 individuals, who were compared to 136 healthy donors. Statistical analysis was performed by using X 2 test, Fischer's Exact Test, and analysis for repeated measurements. The group of HIV+ patients had an unexpected lower frequency of FasLnt169 polymorphism (delT allele) than healthy controls (p=0.039). We then observed no significant differences in the immune reconstitution, in terms of CD4+ T cell increase, when the influence of single alleles of the gene Fas or FasL was considered. However, the combination of some polymorphisms of Fas or FasL significantly influenced CD4+ T cell production and viral load decrease, showing that these genes can play a role in the immunoreconstitution triggered by antiretroviral therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号