首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   40篇
  国内免费   1篇
  2023年   2篇
  2022年   10篇
  2021年   27篇
  2020年   18篇
  2019年   24篇
  2018年   23篇
  2017年   22篇
  2016年   36篇
  2015年   44篇
  2014年   44篇
  2013年   31篇
  2012年   51篇
  2011年   28篇
  2010年   34篇
  2009年   19篇
  2008年   21篇
  2007年   19篇
  2006年   14篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有530条查询结果,搜索用时 31 毫秒
81.

Background

The current concept of overweight/obesity is most likely related to a combination of increased caloric intake and decreased energy expenditure. Widespread inflammation, associated with both conditions, appears to contribute to the development of some obesity-related comorbidities. Interventions that directly or indirectly target individuals at high risk of developing obesity have been largely proposed because of the increasing number of overweight/obese cases worldwide. The aim of the present study was to assess CXCL16, IL-17, and BMP-2 plasma factors in middle-aged and elderly women and relate them to an overweight or obese status. In total, 117 women were selected and grouped as eutrophic, overweight, and obese, according to anthropometric parameters. Analyses of anthropometric and circulating biochemical parameters were followed by plasma immunoassays for CXCL-16, IL-17, and BMP-2.

Results

Plasma mediators increased in all overweight and obese individuals, with the exception of BMP-2 in the elderly group, whereas CXCL16 levels were shown to differentiate overweight and obese individuals. Overweight and/or obese middle-aged and elderly individuals presented with high LDL, triglycerides, and glycemia levels. Anthropometric parameters indicating increased-cardiovascular risk were positively correlated with CXCL-16, BMP-2, and IL-17 levels in overweight and obese middle-aged and elderly individuals.

Conclusion

This study provides evidence that CXCL-16, IL-17, and BMP-2 are potential plasma indicators of inflammatory status in middle-aged and elderly women; therefore, further investigation of obesity-related comorbidities is recommended. CXCL16, in particular, could be a potential marker for middle-aged and elderly individuals transitioning from eutrophic to overweight body types, which represents an asymptomatic and dangerous condition.
  相似文献   
82.
The use of polydopamine as a nitrogen containing precursor to generate catalytically active nitrogen‐doped carbon (CNx) materials on carbon nanotubes (CNTs) is reported. These N‐doped CNx/CNT materials display excellent electrocatalytic activity toward the reduction of triiodide electrolyte in dye‐sensitized solar cells (DSSCs). Further, the influence of various synthesis parameters on the catalytic performance of CNx/CNTs is investigated in detail. The best performing device fabricated with the CNx/CNTs material delivers power conversion efficiency of 7.3%, which is comparable or slightly higher than that of Pt (7.1%) counter electrode‐based DSSC. These CNx/CNTs materials show great potential to address the issues associated with the Pt electrocatalyst including the high cost and scarcity.  相似文献   
83.
Phytophthora capsici is a devastating disease of pepper (Capsicum sp.) in Taiwan causing complete loss of commercial fields. The objective of this study was to characterize genetic diversity for 38 newly collected isolates and three historical isolates. Analysis of data includes whole genome sequence for two new isolates and for two isolates collected previously in 1987 and 1995. In addition, 63 single nucleotide polymorphism loci were genotyped using targeted-sequencing, revealing 27 unique genotypes. Genotypes fell into three genetic groups: two of the groups contain 90% (n = 33) of the 2016 isolates, are triploid (or higher), are exclusively the A2 mating type and appear to be two distinct clonal lineages. The isolates from 2016 that grouped with the historical isolates are diploid and the A1 mating type. Whole genome sequence revealed that ploidy varies by linkage group, and it appears the A2 clonal lineages may have switched mating type due to increased ploidy. Most of the isolates were recently race-typed on a set of differential C. annuum, and although there was no direct correlation between virulence and ploidy, many of the triploid isolates were less virulent as compared to the historical diploid isolates. The implications for breeding resistant pepper and conducting population analyses are discussed.  相似文献   
84.
Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces surface erosion. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter or P was placed in mesh bags, which were buried around trees of Bauhinia purpurea and Leucaena diversifolia between June 2003 and December 2003 (the wet season) or between December 2003 and June 2004 (the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the 6‐month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the dry season. More microbial biomass was produced during the wet season than during the dry season. Furthermore, organic matter addition enhanced the production of AM fungal and bacterial biomass during both periods. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded sites.  相似文献   
85.
Various novel 5-(monosubstituted amino)-2-deoxo-2-phenyl-5-deazaflavins derivatives have been synthesized by direct coupling of 5-deazaflavins and N-alkyl or aryl amines. The antitumor activities against human tumor cell lines CCRF-HSB-2 and KB cells have been investigated in vitro and many compounds showed promising potential antitumor activities with less cytotoxicities. AutoDock molecular docking into PTK (PDB code: 1t46) has been done for lead optimization of these compounds as potential PTK inhibitors. Some of the synthesized 5-(monosubstituted amino)-2-deoxo-2-phenyl-5-deazaflavins at the 5-position exhibited reasonable binding affinities into PTK with the hydrogen bond through their C(5)-NH moiety.  相似文献   
86.
We report the identification of a small family of secreted class III plant peroxidases (Prx) from the genome of the unicellular thermoacidophilic red alga Galdieria sulphuraria (Cyanidiaceae). Apart from two class I ascorbate peroxidases and one cytochrome c peroxidase, the red algal genome encodes four class III plant peroxidases, thus complementing the short list of algal cell wall peroxidases (Passardi et al. in Genomics 89:567–579, 2007). We have characterized the family gene structure, analyzed the extracellular space and cell wall fraction of G. sulphuraria for the presence of peroxidase activity and used shotgun proteomics to identify candidate extracellular peroxidases. For a detailed enzymatic characterization, we have purified a secreted peroxidase (GsPrx04) from the cell-free medium using hydrophobic interaction chromatography. The enzyme proved heat and acid-stable and exhibited an apparent molecular mass of 40 kDa. Comparative genomics between endolithically growing G. sulphuraria and a close relative, the obligatory aquatic, cell wall-less Cyanidioschyzon merolae, revealed that class III peroxidases only occur in the terrestrial microalga, thus supporting the key function of these enzymes in the process of land colonization. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence database accession numbers: GsuAPX01 (EF589723), GsuAPX02 (EF589721), GsuCcP01 (EF589722), GsPrx01 (EF589724), GsPrx02 (EF589725), GsPrx03 (EF589726), and GsPrx04 (EF589727). The nomenclature of peroxidases has been adapted to PeroxiBase ().  相似文献   
87.
The host genetic basis of differential outcomes in HIV infection, progression, viral load set point and highly active retroviral therapy (HAART) responses was examined for the common Y haplogroups in European Americans and African Americans. Accelerated progression to acquired immune deficiency syndrome (AIDS) and related death in European Americans among Y chromosome haplogroup I (Y-I) subjects was discovered. Additionally, Y-I haplogroup subjects on HAART took a longer time to HIV-1 viral suppression and were more likely to fail HAART. Both the accelerated progression and longer time to viral suppression results observed in haplogroup Y-I were significant after false-discovery-rate corrections. A higher frequency of AIDS-defining illnesses was also observed in haplogroup Y-I. These effects were independent of the previously identified autosomal AIDS restriction genes. When the Y-I haplogroup subjects were further subdivided into six I subhaplogroups, no one subhaplogroup accounted for the effects on HIV progression, viral load or HAART response. Adjustment of the analyses for population stratification found significant and concordant haplogroup Y-I results. The Y chromosome haplogroup analyses of HIV infection and progression in African Americans were not significant. Our results suggest that one or more loci on the Y chromosome found on haplogroup Y-I have an effect on AIDS progression and treatment responses in European Americans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
88.
To confirm and refine associations of human leukocyte antigen (HLA) genotypes with variable antibody (Ab) responses to hepatitis B vaccination, we have analyzed 255 HIV-1 seropositive (HIV+) youth and 80 HIV-1 seronegatives (HIV?) enrolled into prospective studies. In univariate analyses that focused on HLA-DRB1, -DQA1, and -DQB1 alleles and haplotypes, the DRB1*03 allele group and DRB1*0701 were negatively associated with the responder phenotype (serum Ab concentration ≥ 10 mIU/mL) (P = 0.026 and 0.043, respectively). Collectively, DRB1*03 and DRB1*0701 were found in 42 (53.8%) out of 78 non-responders (serum Ab <10 mIU/mL), 65 (40.6%) out of 160 medium responders (serum Ab 10–1,000 mIU/mL), and 27 (27.8%) out of 97 high responders (serum Ab >1,000 mIU/mL) (P < 0.001 for trend). Meanwhile, DRB1*08 was positively associated with the responder phenotype (P = 0.010), mostly due to DRB1*0804 (P = 0.008). These immunogenetic relationships were all independent of non-genetic factors, including HIV-1 infection status and immunodeficiency. Alternative analyses confined to HIV+ youth or Hispanic youth led to similar findings. In contrast, analyses of more than 80 non-coding, single nucleotide polymorphisms within and beyond the three HLA class II genes revealed no clear associations. Overall, several HLA-DRB1 alleles were major predictors of differential Ab responses to hepatitis B vaccination in youth, suggesting that T-helper cell-dependent pathways mediated through HLA class II antigen presentation are critical to effective immune response to recombinant vaccines.  相似文献   
89.
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.The biopolymer sporopollenin is the major component of the outer walls in pollen and spores (exines). It is highly resistant to nonoxidative physical, chemical, and biological treatments and is insoluble in both aqueous and organic solvents. While the stability and resistance of sporopollenin account for the preservation of ancient pollen grains for millions of years with nearly full retention of morphology (Doyle and Hickey, 1976; Friis et al., 2001), these same qualities make it extremely difficult to study the chemical structure of sporopollenin. Thus, although the first studies on the composition of sporopollenin were reported in 1928 (Zetzsche and Huggler, 1928), the exact structure of sporopollenin remains unresolved. At present, it is thought that sporopollenin is a complex polymer primarily made of a mixture of fatty acids and phenolic compounds (Guilford et al., 1988; Wiermann et al., 2001).Fatty acids were first implicated as sporopollenin components when ozonolysis of Lycopodium clavatum and Pinus sylvestris exine yielded significant amounts of straight- and branched-chain monocarboxylic acids, characteristic fatty acid breakdown products (Shaw and Yeadon, 1966). More recently, improved purification and degradation techniques coupled with analytical methods, such as solid-state 13C-NMR spectroscopy, Fourier transform infrared spectroscopy, and 1H-NMR, have shown that sporopollenin is made up of polyhydroxylated unbranched aliphatic units and also contains small amounts of oxygenated aromatic rings and phenylpropanoids (Guilford et al., 1988; Ahlers et al., 1999; Domínguez et al., 1999; Bubert et al., 2002). Biochemical studies using thiocarbamate herbicide inhibition of the chain-elongating steps in the synthesis of long-chain fatty acids and radioactive tracer experiments provided further evidence that lipid metabolism is involved in the biosynthesis of sporopollenin (Wilwesmeier and Wiermann, 1995; Meuter-Gerhards et al., 1999).Relatively little is known about the genetic network that determines sporopollenin synthesis. However, several Arabidopsis (Arabidopsis thaliana) genes implicated in exine biosynthesis encode proteins with sequence homology to enzymes that are involved in fatty acid metabolism. Mutations in MALE STERILITY2 (MS2) eliminate exine and affect a protein with sequence similarity to fatty acyl reductases; the predicted inability of ms2 plants to reduce pollen wall fatty acids to the corresponding alcohols suggests that this reaction is a key step in sporopollenin synthesis (Aarts et al., 1997). The FACELESS POLLEN1 (FLP1) gene, whose loss causes the flp1 exine defect, encodes a protein similar to those involved in wax synthesis (Ariizumi et al., 2003). The no exine formation1 (nef1) mutant accumulates reduced levels of lipids, and the NEF1 protein was suggested to be involved in either lipid transport or the maintenance of plastid membrane integrity, including those plastids in the secretory tapetum of anthers, where many of the sporopollenin components are synthesized (Ariizumi et al., 2004). The dex2 mutant has mutations in the evolutionarily conserved anther-specific cytochrome P450, CYP703A2 (Morant et al., 2007), which catalyzes in-chain hydroxylation of saturated medium-chain fatty acids, with lauric acid (C12:0) as a preferred substrate (Morant et al., 2007). A recently described gene, ACOS5, encodes a fatty acyl-CoA synthetase that has in vitro preference for medium-chain fatty acids (de Azevedo Souza et al., 2009). Mutations in all of these genes compromise exine formation.Here, we describe an evolutionarily conserved cytochrome P450, CYP704B1, and demonstrate that this gene is essential for exine biosynthesis and plays a role different from that of CYP703A2. Heterologously expressed CYP704B1 catalyzed ω-hydroxylation of several saturated and unsaturated C14-C18 fatty acids. These results suggest the possibility that ω-hydroxylated fatty acids produced by CYP704B1, together with in-chain hydroxylated lauric acids provided by the action of CYP703A2, may serve as key monomeric aliphatic building blocks in sporopollenin formation. Analyses of the genetic relationships between CYP704B1, MS2, and CYP703A2 suggest that all three genes are involved in the same pathway within the sporopollenin biosynthesis framework.  相似文献   
90.
Analysis of biochemicals in single cells is important for understanding cell metabolism, cell cycle, adaptation, disease states, etc. Even the same cell types exhibit heterogeneous biochemical makeup depending on their physiological conditions and interactions with the environment. Conventional methods of mass spectrometry (MS) used for the analysis of biomolecules in single cells rely on extensive sample preparation. Removing the cells from their natural environment and extensive sample processing could lead to changes in the cellular composition. Ambient ionization methods enable the analysis of samples in their native environment and without extensive sample preparation.1 The techniques based on the mid infrared (mid-IR) laser ablation of biological materials at 2.94 μm wavelength utilize the sudden excitation of water that results in phase explosion.2 Ambient ionization techniques based on mid-IR laser radiation, such as laser ablation electrospray ionization (LAESI) and atmospheric pressure infrared matrix-assisted laser desorption ionization (AP IR-MALDI), have successfully demonstrated the ability to directly analyze water-rich tissues and biofluids at atmospheric pressure.3-11 In LAESI the mid-IR laser ablation plume that mostly consists of neutral particulate matter from the sample coalesces with highly charged electrospray droplets to produce ions. Recently, mid-IR ablation of single cells was performed by delivering the mid-IR radiation through an etched fiber. The plume generated from this ablation was postionized by an electrospray enabling the analysis of diverse metabolites in single cells by LAESI-MS.12 This article describes the detailed protocol for single cell analysis using LAESI-MS. The presented video demonstrates the analysis of a single epidermal cell from the skin of an Allium cepa bulb. The schematic of the system is shown in Figure 1. A representative example of single cell ablation and a LAESI mass spectrum from the cell are provided in Figure 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号