首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   40篇
  国内免费   1篇
  2023年   2篇
  2022年   9篇
  2021年   27篇
  2020年   18篇
  2019年   24篇
  2018年   23篇
  2017年   22篇
  2016年   36篇
  2015年   44篇
  2014年   44篇
  2013年   31篇
  2012年   51篇
  2011年   28篇
  2010年   34篇
  2009年   19篇
  2008年   21篇
  2007年   19篇
  2006年   14篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
61.
62.
Bacterial over-expression of kinases is often associated with high levels of auto-phosphorylation resulting in heterogeneous recombinant protein preparations or sometimes in insoluble protein. Here we present expression systems for nine kinases in Escherichia coli and, for the most heavily phosphorylated, the characterisation of factors affecting auto-phosphorylation. Experiments showed that the level of auto-phosphorylation was proportional to the rate of expression. Comparison of phosphorylation states following in vitro phosphorylation with phosphorylation states following expression in E. coli showed that the non-physiological 'hyper-phosphorylation' was occurring at sites that would require local unfolding to be accessible to a kinase active site. In contrast, auto-phosphorylation on unphosphorylated kinases that had been expressed in bacteria overexpressing λ-phosphatase was only observed on distinct exposed sites. Remarkably, the Ser/Thr kinase PLK4 auto-phosphorylated on a tyrosine residue (Tyr177) located in the activation segment. The results give support to a mechanism in which auto-phosphorylation occurs before or during protein folding. In addition, the expression systems and protocols presented will be a valuable resource to the research community.  相似文献   
63.
64.
We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV)-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC′ loop epitope on domain III (DIII) of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC′ loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development.  相似文献   
65.
66.
Computational modeling of biological processes is a promising tool in biomedical research. While a large part of its potential lies in the ability to integrate it with laboratory research, modeling currently generally requires a high degree of training in mathematics and/or computer science. To help address this issue, we have developed a web-based tool, Bio-Logic Builder, that enables laboratory scientists to define mathematical representations (based on a discrete formalism) of biological regulatory mechanisms in a modular and non-technical fashion. As part of the user interface, generalized “bio-logic” modules have been defined to provide users with the building blocks for many biological processes. To build/modify computational models, experimentalists provide purely qualitative information about a particular regulatory mechanisms as is generally found in the laboratory. The Bio-Logic Builder subsequently converts the provided information into a mathematical representation described with Boolean expressions/rules. We used this tool to build a number of dynamical models, including a 130-protein large-scale model of signal transduction with over 800 interactions, influenza A replication cycle with 127 species and 200+ interactions, and mammalian and budding yeast cell cycles. We also show that any and all qualitative regulatory mechanisms can be built using this tool.  相似文献   
67.
68.
Proteomics is a valuable tool for establishing and comparing the protein content of defined tissues, cell types, or subcellular structures. Its use in non-model species is currently limited because the identification of peptides critically depends on sequence databases. In this study, we explored the potential of a preliminary cDNA database for the non-model species Pisum sativum created by a small number of massively parallel pyrosequencing (MPSS) runs for its use in proteomics and compared it to comprehensive cDNA databases from Medicago truncatula and Arabidopsis thaliana created by Sanger sequencing. Each database was used to identify proteins from a pea leaf chloroplast envelope preparation. It is shown that the pea database identified more proteins with higher accuracy, although the sequence quality was low and the sequence contigs were short compared to databases from model species. Although the number of identified proteins in non-species-specific databases could potentially be increased by lowering the threshold for successful protein identifications, this strategy markedly increases the number of wrongly identified proteins. The identification rate with non-species-specific databases correlated with spectral abundance but not with the predicted membrane helix content, and strong conservation is necessary but not sufficient for protein identification with a non-species-specific database. It is concluded that massively parallel sequencing of cDNAs substantially increases the power of proteomics in non-model species.  相似文献   
69.
70.
In our previous studies, we observed the biological control effect of lactic acid bacteria strains (LABs) KLF01, KLC02 and KPD03 against different plant pathogenic bacteria in vitro against Ralstonia solanacearum, and strains KLF01 and KLC02 against Pectobacterium carotovorum under greenhouse and field experiments, respectively. In this study, we observed the efficacy of these bacteria against bacterial spot pathogen (Xanthomonas campestris pv. vesicatoria) and their plant growth-promoting activities in pepper (Capsicum annuum L. var. annuum), under greenhouse and field conditions. LABs significantly (P < 0.05) reduced bacterial spot on pepper plants in comparison to untreated plants in both the greenhouse and the field experiments. The plant growth-promoting effect of LABs on pepper varied; some strains had a significant effect on growth promotion (P < 0.05) compared with untreated plants, while some showed no significant effect in the greenhouse and field experiments. Additionally, LABs were able to colonise roots, produce indole-3-acetic acid (IAA), siderophores and solubilise phosphate. These findings indicate that application of LABs could provide a promising alternative for the management of bacterial spot disease in pepper plants and could therefore be used as a healthy plant growth-promoting agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号