首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   40篇
  国内免费   1篇
  2023年   2篇
  2022年   9篇
  2021年   27篇
  2020年   18篇
  2019年   24篇
  2018年   23篇
  2017年   22篇
  2016年   36篇
  2015年   44篇
  2014年   44篇
  2013年   31篇
  2012年   51篇
  2011年   28篇
  2010年   34篇
  2009年   19篇
  2008年   21篇
  2007年   19篇
  2006年   14篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有529条查询结果,搜索用时 28 毫秒
151.
The systematic relationships and phylogeography of Cerion incanum, the only species of Cerion native to the Florida Keys, are reviewed based on partial sequences of the mitochondrial COI and 16S genes derived from 18 populations spanning the range of this species and including the type localities of all four described subspecies. Our samples included specimens of Cerion casablancae, a species introduced to Indian Key in 1912, and a population of C. incanum x C. casablancae hybrids descended from a population of C. casablancae introduced onto Bahia Honda Key in the same year. Molecular data did not support the partition of C. incanum into subspecies, nor could populations be apportioned reliably into subspecies based on morphological features used to define the subspecies. Phylogenetic analyses affirmed the derived relationship of C. incanum relative to other cerionids, and indicated a Bahamian origin for the Cerion fauna of southern Florida. Relationships among the populations throughout the Keys indicate that the northernmost populations, closest to the Tomeu paleoislands that had been inhabited by Cerion petuchi during the Calabrian Pleistocene, are the oldest. The range of Cerion incanum expanded as the archipelago that is the Florida Keys was formed since the lower Tarantian Pleistocene by extension from the northeast to the southwest, with new islands populated as they were formed. The faunas of the High Coral Keys in the northeast and the Oölite Keys in the southwest, both with large islands that host multiple discontinuous populations of Cerion, are each composed of well supported clades that are characterized by distinctive haplotypes. In contrast, the fauna of the intervening Low Coral Keys consist of a heterogeneous series of populations, some with haplotypes derived from the High Coral Keys, others from the Oölite Keys. Individuals from the C. incanum x C. casablancae hybrid population inhabiting the southeastern coast of Bahia Honda Key were readily segregated based on their mitogenome lineage, grouping either with C. incanum or with C. casablancae from Indian Key. Hybrids with C. casablancae mitogenomes had haplotypes that were more divergent from their parent mitogenome than were hybrids with C. incanum mitogenomes.  相似文献   
152.
153.
The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.  相似文献   
154.
High cholesterol and diabetes are major risk factors for atherosclerosis. Regression of atherosclerosis is mediated in part by the Liver X Receptor (LXR) through the induction of genes involved in cholesterol transport and efflux. In the context of diabetes, regression of atherosclerosis is impaired. We proposed that changes in glucose levels modulate LXR-dependent gene expression. Using a mouse macrophage cell line (RAW 264.7) and primary bone marrow derived macrophages (BMDMs) cultured in normal or diabetes relevant high glucose conditions we found that high glucose inhibits the LXR-dependent expression of ATP-binding cassette transporter A1 (ABCA1), but not ABCG1. To probe for this mechanism, we surveyed the expression of a host of chromatin-modifying enzymes and found that Protein Arginine Methyltransferase 2 (PRMT2) was reduced in high compared to normal glucose conditions. Importantly, ABCA1 expression and ABCA1-mediated cholesterol efflux were reduced in Prmt2 -/- compared to wild type BMDMs. Monocytes from diabetic mice also showed decreased expression of Prmt2 compared to non-diabetic counterparts. Thus, PRMT2 represents a glucose-sensitive factor that plays a role in LXR-mediated ABCA1-dependent cholesterol efflux and lends insight to the presence of increased atherosclerosis in diabetic patients.  相似文献   
155.

Background

Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F).

Methods

Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection.

Results

The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8+ T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8+ T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2.

Conclusions

Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8+ T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0244-0) contains supplementary material, which is available to authorized users.  相似文献   
156.
Nanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi‐heme c‐type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS‐deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction. In the presence of magnetite wild‐type cells repressed expression of the OmcS gene, suggesting that cells might need to produce less OmcS when magnetite was available. The finding that magnetite can compensate for the lack of the electron transfer functions of a multi‐heme c‐type cytochrome has implications not only for the function of modern microbes, but also for the early evolution of microbial electron transport mechanisms.  相似文献   
157.
Classical life-history theory predicts that acute, immunizing pathogens should maximize between-host transmission. When such pathogens induce violent epidemic outbreaks, however, a pathogen’s short-term advantage at invasion may come at the expense of its ability to persist in the population over the long term. Here, we seek to understand how the classical and invasion-persistence trade-offs interact to shape pathogen life-history evolution as a function of the size and structure of the host population. We develop an individual-based infection model at three distinct levels of organization: within an individual host, among hosts within a local population, and among local populations within a metapopulation. We find a continuum of evolutionarily stable pathogen strategies. At one end of the spectrum—in large well-mixed populations—pathogens evolve to greater acuteness to maximize between-host transmission: the classical trade-off theory applies in this regime. At the other end of the spectrum—when the host population is broken into many small patches—selection favors less acute pathogens, which persist longer within a patch and thereby achieve enhanced between-patch transmission: the invasion-persistence trade-off dominates in this regime. Between these extremes, we explore the effects of the size and structure of the host population in determining pathogen strategy. In general, pathogen strategies respond to evolutionary pressures arising at both scales.  相似文献   
158.
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-Iocalized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOClATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.  相似文献   
159.
Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore–microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A–overexpressing cancers.  相似文献   
160.
Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号