首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   18篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   9篇
  2013年   17篇
  2012年   22篇
  2011年   26篇
  2010年   12篇
  2009年   17篇
  2008年   20篇
  2007年   9篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   14篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
61.
Predicting Prehistoric Taro ( Colocasia esculenta var. antiquorum ) Lo’i Distribution in Hawaii. The artificial wetlands created through taro (Colocasia esculenta var. antiquorum) cultivation have played an important but controversial role in discourse on Hawaiian culture, history, and natural resource management. The extent of taro cultivation has risen and fallen dramatically with changes in population, trends, and culture since Hawaii was first settled by humans. However, since peak taro cultivation occurred before most historical records, it is unknown how much artificial wetland was created in prehistoric times. Past estimates of the extent of taro cultivation have been based on prehistoric population estimates, which are in themselves highly contested. Here we present a simple model based on geographic and climate limitations to predict the maximum amount and distribution of land that could have been dedicated to taro production on the main Hawaiian Islands. Using geographic information systems technology, and historical records of taro distribution, we created a map of potential prehistorical taro sites and total land cover. Our model predicts that prehistoric taro could have covered up to 12 times more land than suggested by past estimates. Limitations to this model include the use of current geographic characteristics to predict historical land use patterns and difficulties in creating parameters general enough to capture all sites without overestimating taro cultivation. Despite these limitations, this model does well encompassing known prehistoric and historical taro localities and should serve as a basis for revising estimated taro coverage.  相似文献   
62.
63.

Background  

The problem of computationally predicting the secondary structure (or folding) of RNA molecules was first introduced more than thirty years ago and yet continues to be an area of active research and development. The basic RNA-folding problem of finding a maximum cardinality, non-crossing, matching of complimentary nucleotides in an RNA sequence of length n, has an O(n 3)-time dynamic programming solution that is widely applied. It is known that an o(n 3) worst-case time solution is possible, but the published and suggested methods are complex and have not been established to be practical. Significant practical improvements to the original dynamic programming method have been introduced, but they retain the O(n 3) worst-case time bound when n is the only problem-parameter used in the bound. Surprisingly, the most widely-used, general technique to achieve a worst-case (and often practical) speed up of dynamic programming, the Four-Russians technique, has not been previously applied to the RNA-folding problem. This is perhaps due to technical issues in adapting the technique to RNA-folding.  相似文献   
64.
65.
Guanine in DNA is a major oxidation target owing to its low ionization potential (IP), and there is often an inverse correlation between damage frequency and sequence-dependent variation in guanine IP. We report that the biological oxidant nitrosoperoxycarbonate (ONOOCO2(-)) paradoxically selects guanines with the highest IP in GC-containing contexts. Along with sequence-dependent variation in damage chemistry, this behavior points to factors other than charge migration as determinants of genomic DNA oxidation.  相似文献   
66.
When faced with nutrient deprivation, Saccharomyces cerevisiae cells enter into a nondividing resting state, known as stationary phase. The Ras/PKA (cAMP-dependent protein kinase) signaling pathway plays an important role in regulating the entry into this resting state and the subsequent survival of stationary phase cells. The survival of these resting cells is also dependent upon autophagy, a membrane trafficking pathway that is induced upon nutrient deprivation. Autophagy is responsible for targeting bulk protein and other cytoplasmic constituents to the vacuolar compartment for their ultimate degradation. The data presented here demonstrate that the Ras/PKA signaling pathway inhibits an early step in autophagy because mutants with elevated levels of Ras/PKA activity fail to accumulate transport intermediates normally associated with this process. Quantitative assays indicate that these increased levels of Ras/PKA signaling activity result in an essentially complete block to autophagy. Interestingly, Ras/PKA activity also inhibited a related process, the cytoplasm to vacuole targeting (Cvt) pathway that is responsible for the delivery of a subset of vacuolar proteins in growing cells. These data therefore indicate that the Ras/PKA signaling pathway is not regulating a switch between the autophagy and Cvt modes of transport. Instead, it is more likely that this signaling pathway is controlling an activity that is required during the early stages of both of these membrane trafficking pathways. Finally, the data suggest that at least a portion of the Ras/PKA effects on stationary phase survival are the result of the regulation of autophagy activity by this signaling pathway.  相似文献   
67.
Akelina Y 《Lab animal》2003,32(1):41-44
As the use of surgical procedures in rodents becomes increasingly common in biomedical research, institutions face the challenge of ensuring that personnel are properly trained to perform these procedures. The author describes a microsurgery training course in use at Columbia University.  相似文献   
68.
69.
The HIV-1 Gag polyprotein contains a segment called p2, located between the capsid (CA) and nucleocapsid (NC) domains, that is essential for ordered virus assembly and infectivity. We subcloned, overexpressed, and purified a 156-residue polypeptide that contains the C-terminal capsid subdomain (CA(CTD)) through the NC domain of Gag (CA(CTD)-p2-NC, Gag residues 276-431) for NMR relaxation and sedimentation equilibrium (SE) studies. The CA(CTD) and NC domains are folded as expected, but residues of the p2 segment, and the adjoining thirteen C-terminal residues of CA(CTD) and thirteen N-terminal residues of NC, are flexible. Backbone NMR chemical shifts of these 40 residues deviate slightly from random coil values and indicate a small propensity toward an alpha-helical conformation. The presence of a transient coil-to-helix equilibrium may explain the unusual and necessarily slow proteolysis rate of the CA-p2 junction. CA(CTD)-p2-NC forms dimers and self-associates with an equilibrium constant (Kd = 1.78 +/- 0.5 microM) similar to that observed for the intact capsid protein (Kd = 2.94 +/- 0.8 microM), suggesting that Gag self-association is not significantly influence by the P2 domain.  相似文献   
70.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号