首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   18篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   9篇
  2013年   17篇
  2012年   22篇
  2011年   26篇
  2010年   12篇
  2009年   17篇
  2008年   20篇
  2007年   9篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   14篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
21.
22.
Polyubiquitin chains serve a variety of physiological roles. Typically the chains are bound covalently to a protein substrate and in many cases target it for degradation by the 26S proteasome. However, several studies have demonstrated the existence of free polyubiquitin chains which are not linked to a specific substrate. Several physiological functions have been attributed to these chains, among them playing a role in signal transduction and serving as storage of ubiquitin for utilization under stress. In the present study, we have established a system for the detection of free ubiquitin chains and monitoring their level under changing conditions. Using this system, we show that UFD4 (ubiquitin fusion degradation 4), a HECT (homologous with E6-AP C-terminus) domain ubiquitin ligase, is involved in free chain generation. We also show that generation of these chains is stimulated in response to a variety of stresses, particularly those caused by DNA damage. However, it appears that the stress-induced synthesis of free chains is catalyzed by a different ligase, HUL5 (HECT ubiquitin ligase 5), which is also a HECT domain E3.  相似文献   
23.
uPA (urokinase-type plasminogen activator) stimulates cell migration through multiple pathways, including formation of plasmin and extracellular metalloproteinases, and binding to the uPAR (uPA receptor; also known as CD87), integrins and LRP1 (low-density lipoprotein receptor-related protein 1) which activate intracellular signalling pathways. In the present paper we report that uPA-mediated cell migration requires an interaction with fibulin-5. uPA stimulates migration of wild-type MEFs (mouse embryonic fibroblasts) (Fbln5+/+ MEFs), but has no effect on fibulin-5-deficient (Fbln5-/-) MEFs. Migration of MEFs in response to uPA requires an interaction of fibulin-5 with integrins, as MEFs expressing a mutant fibulin-5 incapable of binding integrins (Fbln(RGE/RGE) MEFs) do not migrate in response to uPA. Moreover, a blocking anti-(human β1-integrin) antibody inhibited the migration of PASMCs (pulmonary arterial smooth muscle cells) in response to uPA. Binding of uPA to fibulin-5 generates plasmin, which excises the integrin-binding N-terminal cbEGF (Ca2+-binding epidermal growth factor)-like domain, leading to loss of β1-integrin binding. We suggest that uPA promotes cell migration by binding to fibulin-5, initiating its cleavage by plasmin, which leads to its dissociation from β1-integrin and thereby unblocks the capacity of integrin to facilitate cell motility.  相似文献   
24.
Parkinson's disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD.  相似文献   
25.
Natriuretic peptides (NP), including atrial natriuretic peptide (ANP), induce potent natriuresis and vasodilation and thereby generate hypotension in vivo. Despite intensive efforts, clinical application of NP as an antihypertensive agent is limited because of their short biological half-life and poor bioavailability. Recently, we have developed a strategy that facilitates slow release of peptides from PEG-peptide inactive conjugates, based on reversible pegylation. Peptides prepared by this approach undergo slow, spontaneous chemical hydrolysis at physiological conditions, releasing the native active peptide/protein drug from the inactive conjugates over prolonged periods. A PEG chain of 30 kDa was linked covalently to the alpha-amino side chain of the hormone via a MAL-Fmoc-NHS spacer, yielding PEG 30-Fmoc-ANP, a prodrug that releases the native hormone upon incubation at physiological conditions. Bolus administration of native ANP to Wistar rats receiving adrenaline yields a short, transitory effect in lowering blood pressure (BP), reaching a maximum at 2 min, and then returning to control values after 12 to 25 min. In contrast, administration of PEG 30-Fmoc-ANP lowered BP following a lag period of 50 min, and maintained low BP for a period exceeding 60 min. Saline or PEG 30-Fmoc-Alanine were not effective in lowering BP in Wistar rats. These results show that the novel compound, PEG 30-Fmoc-ANP, is a reversible pegylated prodrug derivative that facilitates a prolonged BP lowering effect in rats and may be considered as a candidate for development into an antihypertensive drug.  相似文献   
26.
Fishman Y  Zlotkin E  Sher D 《PloS one》2008,3(7):e2603

Background

Algal-cnidarian symbiosis is one of the main factors contributing to the success of cnidarians, and is crucial for the maintenance of coral reefs. While loss of the symbionts (such as in coral bleaching) may cause the death of the cnidarian host, over-proliferation of the algae may also harm the host. Thus, there is a need for the host to regulate the population density of its symbionts. In the green hydra, Chlorohydra viridissima, the density of symbiotic algae may be controlled through host modulation of the algal cell cycle. Alternatively, Chlorohydra may actively expel their endosymbionts, although this phenomenon has only been observed under experimentally contrived stress conditions.

Principal Findings

We show, using light and electron microscopy, that Chlorohydra actively expel endosymbiotic algal cells during predatory feeding on Artemia. This expulsion occurs as part of the apocrine mode of secretion from the endodermal digestive cells, but may also occur via an independent exocytotic mechanism.

Significance

Our results demonstrate, for the first time, active expulsion of endosymbiotic algae from cnidarians under natural conditions. We suggest this phenomenon may represent a mechanism whereby cnidarians can expel excess symbiotic algae when an alternative form of nutrition is available in the form of prey.  相似文献   
27.
Multiple interactions between parasite ligands and their receptors on the human erythrocyte are a condition of successful Plasmodium falciparum invasion. The identification and characterization of these receptors presents a major challenge in the effort to understand the mechanism of invasion and to develop the means to prevent it. We describe here a novel member of the reticulocyte-binding family homolog (RH) of P. falciparum, PfRH5, and show that it binds to a previously unrecognized receptor on the RBC. PfRH5 is expressed as a 63 kDa protein and localized at the apical end of the invasive merozoite. We have expressed a fragment of PfRH5 which contains the RBC-binding domain and exhibits the same pattern of interactions with the RBC as the parent protein. Attachment is inhibited if the target cells are exposed to high concentrations of trypsin, but not to lower concentrations or to chymotrypsin or neuraminidase. We have determined the affinity, copy number and apparent molecular mass of the receptor protein. Thus, we have shown that PfRH5 is a novel erythrocyte-binding ligand and the identification and partial characterization of the new RBC receptor may indicate the existence of an unrecognized P. falciparum invasion pathway.  相似文献   
28.
In this communication, we document the self-assembly of heterologously expressed truncated human aromatase (CYP19) into nanometer scale phospholipids bilayers (Nanodiscs). The resulting P450 CYP19 preparation is stable and can tightly associate with the substrate androstenedione to form a nearly complete high-spin ferric protein. Ferrous CYP19 in Nanodiscs was mixed anaerobically in a rapid-scan stopped-flow with atmospheric dioxygen and the formation of the ferrous-oxy complex observed. First order decay of the oxy-complex to release superoxide and regenerate the ferric enzyme was monitored kinetically. Surprisingly, the ferrous-oxy complex of aromatase is more stable than that of hepatic CYP3A4, opening the path to precisely determine the biochemical and biophysical properties of the reaction cycle intermediates in this important human drug target.  相似文献   
29.
Cysteine proteases play critical biological roles in both intracellular and extracellular processes. We characterized Ce-cpl-1, a Caenorhabditis elegans cathepsin L-like cysteine protease. RNA interference with Ce-cpl-1 activity resulted in embryonic lethality and a transient delayed growth of larvae to egg producing adults, suggesting an essential role for cpl-1 during embryogenesis, and most likely during post-embryonic development. Cpl-1 gene (Ce-cpl-1:lacZ) is widely expressed in the intestine and hypodermal cells of transgenic worms, while the fusion protein (Ce-CPL-1::GFP) was expressed in the hypodermis, pharynx, and gonad. The CPL-1 native protein accumulates in early to late stage embryos and becomes highly concentrated in gut cells during late embryonic development. CPL-1 is also present near the periphery of the eggshell as well as in the cuticle of larval stages suggesting that it may function not only in embryogenesis but also in further development of the worm. Although the precise role of Ce-CPL-1 during embryogenesis is not yet clear it could be involved in the processing of nutrients responsible for synthesis and/or in the degradation of eggshell. Moreover, an increase in the cpl-1 mRNA is seen in the intermolt period approximately 4 h prior to each molt. During this process Ce-CPL-1 may act as a proteolytic enzyme in the processing/degradation of cuticular or other proteins. Similar localization of a related cathepsin L in the filarial nematode Onchocerca volvulus, eggshell and cuticle, suggests that some of the Ce-CPL-1 function during development may be conserved in other parasitic nematodes.  相似文献   
30.
fs3.1 is a major fruit shape (defined as the ratio of fruit length to fruit width) quantitative trait locus (QTL) originally detected in an intraspecific cross of Capsicum annuum between the blocky and elongated-fruited inbreds 'Maor' and 'Perennial', respectively. In addition to increasing fruit shape index, the 'Perennial' allele at fs3.1 increased fruit elongation and decreased fruit width and pericarp thickness. We verified the effect of fs3.1 in backcross inbred lines (BILs) derived from crossing 'Perennial' with 'Maor' and with a second blocky-type inbred line of C. annuum. To determine the effect of the fs3.1 region in additional Capsicum species, we constructed an advanced backcross population from the cross of 'Maor' and the oval-fruited Capsicum frutescens BG 2816 and an F2 of the introgression line IL 152 that contains an introgression of the fs3.1 region from Capsicum chinense PI 152225. QTLs for fruit shape, fruit width, and pericarp thickness, but not for fruit length, were detected in both crosses, indicating the conservation of the fs3.1 region as a QTL affecting fruit shape in pepper. We also tested tomato (Lycopersicon spp.) introgression lines containing the corresponding fs3.1 region from L. pennellii and L. hirsutum, but we did not detect a significant fruit shape QTL in these lines. The effect of fs3.1 on the growth of fruit dimensions varied with the genetic background. By measuring the length and width of ovaries and fruits of near-isogenic C. annuum lines that differ in fs3.1 during fruit development, we determined that fs3.1 controls shape predominantly by increasing the growth rate of the longitudinal axis in the first 2 weeks after pollination. However, in the crosses of C. annuum with C. frutescens and C. chinense, fs3.1 predominantly exerted its effect on the width dimension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号