全文获取类型
收费全文 | 92516篇 |
免费 | 6710篇 |
国内免费 | 6407篇 |
专业分类
105633篇 |
出版年
2024年 | 201篇 |
2023年 | 1254篇 |
2022年 | 2940篇 |
2021年 | 4870篇 |
2020年 | 3195篇 |
2019年 | 4016篇 |
2018年 | 3956篇 |
2017年 | 2866篇 |
2016年 | 4052篇 |
2015年 | 5842篇 |
2014年 | 6888篇 |
2013年 | 7248篇 |
2012年 | 8494篇 |
2011年 | 7737篇 |
2010年 | 4483篇 |
2009年 | 4187篇 |
2008年 | 4776篇 |
2007年 | 4147篇 |
2006年 | 3532篇 |
2005年 | 2820篇 |
2004年 | 2312篇 |
2003年 | 2105篇 |
2002年 | 1698篇 |
2001年 | 1471篇 |
2000年 | 1342篇 |
1999年 | 1407篇 |
1998年 | 819篇 |
1997年 | 892篇 |
1996年 | 813篇 |
1995年 | 774篇 |
1994年 | 673篇 |
1993年 | 570篇 |
1992年 | 682篇 |
1991年 | 535篇 |
1990年 | 455篇 |
1989年 | 331篇 |
1988年 | 278篇 |
1987年 | 220篇 |
1986年 | 184篇 |
1985年 | 210篇 |
1984年 | 124篇 |
1983年 | 118篇 |
1982年 | 54篇 |
1981年 | 23篇 |
1980年 | 20篇 |
1979年 | 18篇 |
1976年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Hua Zhang Ying Gao Zhengwei Dai Tao Meng Shengfen Tu Yong Yan 《Neurochemical research》2011,36(1):49-57
Insulin-like growth factor 1 (IGF-1) stimulates α-secretase processing of amyloid precursor protein (APP) and decreases Aβ production. Little is known about the relationship between IGF-1 and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), the protease essential for the production of β-amyloid peptides (Aβ). Here, we investigated the effect of IGF-1 on BACE-1 in PC12 cells. Quantitative polymerase chain reaction analysis and western blot showed that treatment of cells with IGF-1 significantly decreased the levels of BACE-1 mRNA and protein. Furthermore, IGF-1 increased the phosphorylation of Akt and ERK1/2. The presence of the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 and the mitogen-activated protein kinase kinases (MEK) inhibitor PD98059 blocked the effect of IGF-1 on BACE-1. Our data indicated that IGF-1-induced reduction of BACE-1 might involve the PI3-K/Akt and MAPK/ERK1/2 signaling pathways. 相似文献
102.
103.
104.
105.
Small RNAs(s RNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and s RNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of s RNAs,RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of s RNAs in plant defense, bringing in the opportunity to utilize s RNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of s RNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction,and the application of s RNAs in disease and insect herbivore control. 相似文献
106.
Zhonglan Gao Chengyue Zhang Siwang Yu Xiaoda Yang Kui Wang 《Journal of biological inorganic chemistry》2011,16(5):789-798
Endoplasmic reticulum (ER) stress induced by free fatty acids (FFA) is important to β-cell loss during the development of type 2 diabetes. To test whether vanadium compounds could influence ER stress and the responses in their mechanism of antidiabetic effects, we investigated the effects and the mechanism of vanadyl bisacetylacetonate [VO(acac)2] on β cells upon treatment with palmitate, a typical saturated FFA. The experimental results showed that VO(acac)2 could enhance FFA-induced signaling pathways of unfolded protein responses by upregulating the prosurvival chaperone immunoglobulin heavy-chain binding protein/78-kDa glucose-regulated protein and downregulating the expression of apoptotic C/EBP homologous protein, and consequently the reduction of insulin synthesis. VO(acac)2 also ameliorated FFA-disturbed Ca2+ homeostasis in β cells. Overall, VO(acac)2 enhanced stress adaption, thus protecting β cells from palmitate-induced apoptosis. This study provides some new insights into the mechanisms of antidiabetic vanadium compounds. 相似文献
107.
Autophagy is an intracellular degradation process for recycling macromolecules and organelles. It plays important roles in plant development and in response to nutritional demand, stress, and senescence. Organisms from yeast to plants contain many autophagy-associated genes (ATG). In this study, we found that a total of 33 ATG homologues exist in the rice [Oryza sativa L. (Os)] genome, which were classified into 13 ATG subfamilies. Six of them are alternatively spliced genes. Evolutional analysis showed that expansion of 10 OsATG homologues occurred via segmental duplication events and that the occurrence of these OsATG homologues within each subfamily was asynchronous. The Ka/Ks ratios suggested purifying selection for four duplicated OsATG homologues and positive selection for two. Calculating the dates of the duplication events indicated that all duplication events might have occurred after the origin of the grasses, from 21.43 to 66.77 million years ago. Semi-quantitative RT–PCR analysis and mining the digital expression database of rice showed that all 33 OsATG homologues could be detected in at least one cell type of the various tissues under normal or stress growth conditions, but their expression was tightly regulated. The 10 duplicated genes showed expression divergence. The expression of most OsATG homologues was regulated by at least one treatment, including hormones, abiotic and biotic stresses, and nutrient limitation. The identification of OsATG homologues showing constitutive expression or responses to environmental stimuli provides new insights for in-depth characterization of selected genes of importance in rice. 相似文献
108.
Shu-Qun Liu Yan Tao Zhao-Hui Meng Yun-Xin Fu Ke-Qin Zhang 《Journal of molecular modeling》2011,17(2):289-300
The native serine protease proteinase K binds two calcium cations. It has been reported that Ca2+ removal decreased the enzyme’s thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca2+-bound and Ca2+-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca2+ sites. Although Ca2+ removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca2+, the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca2+ removal, but also complement the experimentally determined structural and biochemical data. 相似文献
109.
A Durable Alternative for Proton‐Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s
Dan Zhao Jinhuan Li Min‐Kyu Song Baolian Yi Huamin Zhang Meilin Liu 《Liver Transplantation》2011,1(2):203-211
To develop a durable proton‐exchange membrane (PEM) for fuel‐cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier‐transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR and 19F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three‐electrode cell configuration. The physicochemical properties of the membranes vital to fuel‐cell performance are also carefully evaluated under conditions relevant to fuel‐cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co‐polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO‐HFB‐60 (HFB‐60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel‐cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel‐cell applications. 相似文献
110.