首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   28篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   16篇
  2014年   21篇
  2013年   16篇
  2012年   29篇
  2011年   51篇
  2010年   20篇
  2009年   19篇
  2008年   21篇
  2007年   24篇
  2006年   17篇
  2005年   26篇
  2004年   13篇
  2003年   20篇
  2002年   16篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1964年   2篇
  1959年   1篇
排序方式: 共有390条查询结果,搜索用时 265 毫秒
91.
92.
Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was seen, which was found by mutational analysis to be essential for the activity of HvSSI on glycogen. We now show in binding studies using surface plasmon resonance that HvSSI has no detectable affinity for malto-triose and -tetraose, but clearly binds maltopentaose, -hexaose, -heptaose (M7) and β-cyclodextrin (β-CD) albeit with a measurable K D for only β-CD and M7. Moreover, an HvSSI SBS mutant F538A lost the ability to bind β-CD and maltooligosaccharides. This behaviour suggests that a chain in the α-glucan molecule (amylopectin) that is undergoing extension attaches itself at the SBS and that the active site itself, likely working on a different end chain, has low affinity for both substrate and product.  相似文献   
93.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   
94.
Feral Pigeons Columba livia are highly adapted to urban environments and are thus often abundant in cities. This can lead to various problems, including fouling of building facades and pavements, transmission of allergens and pathogenic micro‐organisms, and infestations of ectoparasites derived from breeding sites. To develop effective, long‐lasting and humane control strategies, it is necessary to understand the demography of Feral Pigeons. Although food shortage is a major source of reproductive failure in Feral Pigeons, it is still unclear at which phase of the reproductive cycle this reduces overall reproductive success. Here, we assess the effect of a sudden reduction in the food base on the reproduction of a well‐studied Feral Pigeon breeding colony. The findings of this study suggest that the number of broods per pair decreases significantly during food scarcity, and that although hatching success remains constant, a significantly greater number of nestlings die during the rearing phase. This suggests that the high energy demand of Feral Pigeon nestlings could not be met under conditions of food scarcity, which reduced the total number of fledged young by more than half and led to a reduction in the colony size. These results have important implications for selecting suitable, durable and humane control strategies for the management of large Feral Pigeon populations in urban environments.  相似文献   
95.
96.
97.
Germination of barley is accompanied by changes in water-soluble seed proteins. 2-DE was used to describe spatio-temporal proteome differences in dissected seed tissues associated with germination and the subsequent radicle elongation. Protein identification by MS enabled assignment of proteins and functions to the seed embryo, aleurone, and endosperm. Abundance in 2-DE patterns was monitored for 48 different proteins appearing in 79 gel spots at 8 time-points up to 72 h post imbibition (PI). In embryo, a beta-type proteasome subunit and a heat shock protein 70 fragment were among the earliest proteins to appear (at 4 h PI). Other early changes were observed that affected spots containing desiccation stress-associated late embryogenesis abundant and abscisic acid (ABA)-induced proteins. From 12 h PI proteins characteristic for desiccation stress disappeared rapidly, as did a putative embryonic protein and an ABA-induced protein, suggesting that these proteins are also involved in desiccation stress. Several redox-related proteins differed in spatio-temporal patterns at the end of germination and onset of radicle elongation. Notably, ascorbate peroxidase that was observed only in the embryo, increased in abundance at 36 h PI. The surprisingly early changes seen in the protein profiles already 4 h after imbibition indicate that germination is programmed during seed maturation.  相似文献   
98.
99.
Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund–Potsdam–Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming‐induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land‐use and land‐cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale.  相似文献   
100.
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance‐induced mechanisms and processes to also operate in an extreme context. The paucity of well‐defined studies currently renders a quantitative meta‐analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land‐cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground‐based observational case studies reveals that many regions in the (sub‐)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号