首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6327篇
  免费   579篇
  国内免费   4篇
  6910篇
  2023年   28篇
  2022年   62篇
  2021年   123篇
  2020年   65篇
  2019年   86篇
  2018年   110篇
  2017年   98篇
  2016年   163篇
  2015年   277篇
  2014年   321篇
  2013年   405篇
  2012年   429篇
  2011年   478篇
  2010年   286篇
  2009年   266篇
  2008年   390篇
  2007年   381篇
  2006年   314篇
  2005年   335篇
  2004年   311篇
  2003年   318篇
  2002年   312篇
  2001年   52篇
  2000年   32篇
  1999年   55篇
  1998年   77篇
  1997年   51篇
  1996年   54篇
  1995年   40篇
  1994年   46篇
  1993年   48篇
  1992年   38篇
  1991年   36篇
  1990年   30篇
  1989年   31篇
  1988年   23篇
  1987年   30篇
  1983年   27篇
  1982年   35篇
  1981年   26篇
  1980年   25篇
  1979年   28篇
  1978年   32篇
  1976年   22篇
  1974年   23篇
  1973年   22篇
  1972年   26篇
  1970年   20篇
  1967年   28篇
  1966年   20篇
排序方式: 共有6910条查询结果,搜索用时 15 毫秒
81.
Microbiota inhabiting the gastrointestinal (GI) tract of animals has important impacts on many host physiological processes. Although host diet is a major factor influencing the composition of the gut micro‐organismal community, few comparative studies have considered how differences in diet influence community composition across the length of the GI tract. We used 16S sequencing to compare the microbiota along the length of the GI tract in Abert's (Sciurus aberti) and fox squirrels (S. niger) living in the same habitat. While fox squirrels are generalist omnivores, the diet of Abert's squirrels is unusually high in plant fiber, particularly in winter when they extensively consume fiber‐rich inner bark of ponderosa pine (Pinus ponderosa). Consistent with previous studies, microbiota of the upper GI tract of both species consisted primarily of facultative anaerobes and was less diverse than that of the lower GI tract, which included mainly obligate anaerobes. While we found relatively little differentiation between the species in the microbiota of the upper GI tract, the community composition of the lower GI tract was clearly delineated. Notably, the Abert's squirrel lower GI community was more stable in composition and enriched for microbes that play a role in the degradation of plant fiber. In contrast, overall microbial diversity was higher in fox squirrels. We hypothesize that these disparities reflect differences in diet quality and diet breadth between the species.  相似文献   
82.
Jun H  Stivers JT 《Biochemistry》2012,51(13):2940-2949
A key aspect of the reaction mechanism of type IB topoisomerases is the controlled unwinding of DNA supercoils while the enzyme is transiently bound to one strand of the DNA duplex via a phosphotyrosyl linkage. In this complex, the mobile segment of the bound DNA downstream from the site of cleavage must rotate around the helical axis, requiring that interactions with the enzyme must break and re-form multiple times during the course of removing supercoils. A crystal structure of variola virus type IB topoisomerase (vTopo) bound to DNA shows several positively charged side chains that interact with the downstream mobile and upstream rigid segments, suggesting that these groups may play a role in catalysis, including the processive unwinding of supercoils. We have mutated three such residues, R67, K35, and K271, to Ala and Glu and determined the energetic effects of these mutations at each point along the reaction coordinate of vTopo. R67 interacts with a phosphate group in the rigid DNA segment across from the site of DNA strand cleavage. The ~30-fold damaging effects of the R67A and R67E mutations were primarily on the phosphoryl transfer step, with little effect on enzyme-DNA binding, or the processivity of supercoil unwinding. Removal of the K35 interaction shows mutational effects similar to those of R67, even though this residue interacts with the mobile segment 3 bp from the cleavage site. The two mutations of K271, which interacts with the mobile region even further from the site of covalent linkage, show significant effects not only on phosphoryl transfer but also on downstream DNA strand positioning. Moreover, supercoil unwinding measurements indicate that the K271A and K271E mutations increase the average number of supercoils that are removed during the lifetime of the covalent complex, enhancing the processivity of supercoil unwinding. These measurements support the proposal that the processivity of supercoil unwinding can be regulated by electrostatic interactions between the enzyme and the mobile DNA phosphate backbone.  相似文献   
83.
84.
Herbivores are sensitive to the genetic structure of plant populations, as genetics underlies plant phenotype and host quality. Polyploidy is a widespread feature of angiosperm genomes, yet few studies have examined how polyploidy influences herbivores. Introduction to new ranges, with consequent changes in selective regimes, can lead to evolution of changes in plant defensive characteristics and also affect herbivores. Here, we examine how insect herbivores respond to polyploidy in Solidago gigantea, using plants derived from both the native range (USA) and introduced range (Europe). S. gigantea has three cytotypes in the US, with two of these present in Europe. We performed bioassays with generalist (Spodoptera exigua) and specialist (Trirhabda virgata) leaf-feeding insects. Insects were reared on detached leaves (Spodoptera) or potted host plants (Trirhabda) and mortality and mass were measured. Trirhabda larvae showed little variation in survival or pupal mass attributable to either cytotype or plant origin. Spodoptera larvae were more sensitive to both cytotype and plant origin: they grew best on European tetraploids and poorly on US diploids (high mortality) and US tetraploids (low larval mass). These results show that both cytotype and plant origin influence insect herbivores, but that generalist and specialist insects may respond differently.Key words: polyploidy, cytotype, Solidago gigantea, insect herbivore, herbivory, invasive plant, introduced plantPolyploidy, or the possession of more than two sets of homologous chromosomes, is a fundamental force in angiosperm evolution.1,2 Many plant species or species complexes consist of multiple cytotypes that may occur sympatrically;3 this is an important source of genetic structure in plant populations that is often overlooked.4 Possession of multiple genomes may confer advantages to polyploid plants such as increased heterozygosity, a decreased probability of inbreeding depression, or a greater gene pool available for selection; these traits contribute to the widespread success of polyploids and may make them prone to invasiveness.5,6 In a recent article,7 we examined the functional consequences of polyploidy for different cytotypes of Solidago gigantea Ait. (Asteraceae), collected from both its native range (North America) and its introduced range (Europe). In this addendum, we show how cytotype and continent of origin influence interactions of S. gigantea with insect herbivores. Interactions with herbivores are expected to vary with cytotype because of phenotypic changes associated with polyploidy, but this area has received little study (reviewed in refs. 811). Plant origin, from either the native range or an introduced range, should also influence herbivores. Plants may escape from their specialist natural enemies in the introduced range, thereby experiencing reduced herbivore pressure from an insect community dominated by generalists.12,13 Given sufficient time, plants from the introduced range may evolve to decrease investment in anti-herbivore defenses, particularly those effective against specialists.14 While a growing body of research has addressed whether plant defenses against herbivory are lower in the introduced range,12,15,16 few of these studies have also examined the influence of cytotype.17Three cytotypes of S. gigantea can be found in its native range in North America (diploid, tetraploid and hexaploid, 2n = 18, 36 and 54 respectively). These are morphologically indistinguishable and not generally treated as separate species.18 In Europe, where S. gigantea was introduced in the mid 18th century,19 tetraploids are the dominant cytotype but diploids also occur. S. gigantea supports a diverse array of insect herbivores in its native range, but has few natural enemies in its introduced range.20 We report here on experiments using both a generalist and a specialist leaf-chewing insect. The generalist, Spodoptera exigua (Lepidoptera: Noctuidae) is widely distributed and highly polyphagous, while the specialist Trirhabda virgata (Coleoptera: Chrysomelidae) feeds only on closely-related species within the genus Solidago. T. virgata is an outbreak insect that can be a major defoliator of S. gigantea and related species in North America.21 We grew plants originating from 10 populations in the US and 20 populations in Europe in common gardens at the University of Wisconsin-Milwaukee Field Station in Saukville, Wisconsin. There were five plant origin-cytotype combinations: three cytotypes from the US and two from Europe. Insects were reared on detached leaves from a single plant (Spodoptera) or on potted host plants (Trirhabda), for a set period of 21 d (Spodoptera) or until pupation (Trirhabda). We recorded insect survival and mass at the end of 21 d (Spodoptera) or at pupation (Trirhabda) (reviewed in ref. 22).Overall survival was much better for the specialist Trirhabda than for the generalist Spodoptera (91% vs. 72%). Spodoptera larvae are not generally found on S. gigantea in the field, and while they are able to complete development, we found that this plant was not an ideal host. Spodoptera larvae were more sensitive to differences among cytotype and plant origin than were Trirhabda larvae. Percent survival was particularly poor for Spodoptera larvae reared on diploids from the US, where slightly more than half of the caterpillars survived for 21 days (Fig. 1). Trirhabda pupal mass was remarkably consistent across the five ploidy-plant origin combinations. In contrast, Spodoptera larvae responded to both cytotype and continent of origin. Surviving Spodoptera larvae did particularly well on tetraploid plants from the introduced range (Europe), and particularly poorly on tetraploids from the US (Fig. 1). We have previously reported that Spodoptera grow better on plants from Europe;22 our current results reveal that this difference is due exclusively to better growth on tetraploid plants. However, our results also show that both diploids and tetraploids from the US were poor hosts for Spodoptera: diploids because they caused high mortality and tetraploids because they resulted in poor growth. These results indicate that plants from the introduced range have reduced defenses against herbivores, even when accounting for polyploidy.Open in a separate windowFigure 1Mass ± se of S. exigua (A) and T. virgata (B) larvae reared on host plants of different cytotypes of Solidago gigantea originating from the US (native range) or europe (introduced range). Means in A followed by different letters are significantly different at p < 0.05 (ANOVA followed by multiple Student''s t-tests with Bonferroni correction). There were no significant differences in (B). Sample sizes for (A and B) shown in
SpodopteraTrirhabda
No. SurvivingInitial No.% SurvivalNo. SurvivingInitial No.% Survival
US-Diploid213954373995
US-Tetraploid709375829289
US-Hexaploid162467232496
EU-Diploid152365232496
EU-Tetraploid1011297811412988
Open in a separate windowInsects were reared on a single genotype of each cytotype-origin combination for 21 days (Spodoptera) or until pupation (Trirhabda). Sample sizes for each cytotype-origin combination vary because cytotypes were not known at the time plants were collected; these distributions represent frequencies of cytotypes in our collections.Effects of the host plant on Spodoptera were probably driven, at least in part, by changes in secondary chemistry. We have previously shown that foliar terpenoids, chemicals known to influence insect herbivores,23,24 are affected by both cytotype and continent of origin.7 It is surprising that Trirhabda larvae were not more sensitive to these differences in secondary chemistry among the five ploidy-origin combinations, given that Trirhabda is known to respond to host-plant chemistry.23 We have previously reported that Trirhabda growth does not differ on European and US plants22 and show here that accounting for cytotype does not change this conclusion. In a recent study on the closely-related Solidago altissima, Halverson et al.11 reported that the effects of plant cytotype on 5 gall-making herbivores were complex and not easily characterized. All five herbivores responded to plant cytotype, but for four of the five insects the most preferred cytotype was not consistent across sites. It is possible in our study that Trirhabda were responding to cytotype at a finer scale than that examined here. There may be differences due to cytotype that shift among the populations that we sampled, and that are averaged out when examined at the continental scale. We lack sufficient replication of cytotypes within populations to test this possibility. Even so, our results reported here reveal that plant cytotype can be an important source of variation affecting insect herbivores, but that generalist and specialist insects may respond differently.  相似文献   
85.
Critical Role for Interferon Regulatory Factor 3 (IRF-3) and IRF-7 in Type I Interferon-Mediated Control of Murine Norovirus Replication     
Larissa B. Thackray  Erning Duan  Helen M. Lazear  Amal Kambal  Robert D. Schreiber  Michael S. Diamond  Herbert W. Virgin 《Journal of virology》2012,86(24):13515-13523
  相似文献   
86.
Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract     
Gaia Vegezzi  Laura Anselmi  Jennifer Huynh  Elisabetta Barocelli  Enrique Rozengurt  Helen Raybould  Catia Sternini 《PloS one》2014,9(9)
  相似文献   
87.
Combined ipilimumab and nivolumab first‐line and after BRAF‐targeted therapy in advanced melanoma     
Robert Mason  Helen C. Dearden  Bella Nguyen  Jennifer A. Soon  Jessica Louise Smith  Manreet Randhawa  Andrew Mant  Lydai Warburton  Serigne Lo  Tarek Meniawy  Alexander Guminski  Phillip Parente  Sayed Ali  Andrew Haydon  Georgina V. Long  Matteo S. Carlino  Michael Millward  Victoria G. Atkinson  Alexander M. Menzies 《Pigment cell & melanoma research》2020,33(2):358-365
The combination of ipilimumab and nivolumab is a highly active systemic therapy for metastatic melanoma but can cause significant toxicity. We explore the safety and efficacy of this treatment in routine clinical practice, particularly in the setting of serine/threonine‐protein kinase B‐Raf (BRAF)‐targeted therapy. Consecutive patients with unresectable stage IIIC/IV melanoma commenced on ipilimumab and nivolumab across 10 tertiary melanoma institutions in Australia were identified retrospectively. Data collected included demographics, response and survival outcomes. A total of 152 patients were included for analysis, 39% were treatment‐naïve and 22% failed first‐line BRAF/MEK inhibitors. Treatment‐related adverse events occurred in 67% of patients, grade 3–5 in 38%. The overall objective response rate was 41%, 57% in treatment‐naïve and 21% in BRAF/MEK failure patients. Median progression‐free survival was 4.0 months (95% CI, 3.0–6.0) in the whole cohort, 11.0 months (95% CI, 6.0‐NR) in treatment‐naïve and 2.0 months (95% CI, 1.4–4.6) in BRAF/MEK failure patients. The combination of ipilimumab and nivolumab can be used safely and effectively in a real‐world population. While first‐line efficacy appears comparable to trial populations, BRAF‐mutant patients failing prior BRAF/MEK inhibitors show less response.  相似文献   
88.
Non‐native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability     
Jessica S. Ho  Grant D. Geske  Helen E. Blackwell  Edward G. Ruby 《Environmental microbiology》2014,16(8):2623-2634
Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR‐type N‐acyl L‐homoserine (AHL) quorum sensing is common in Gram‐negative Proteobacteria, and many members of this group have additional quorum‐sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS‐dependent quorum sensing converges with LuxI‐dependent quorum sensing at the LuxR regulatory element. Both AinS‐ and LuxI‐mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI‐ and AinS‐dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI‐ and AinS‐mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non‐native AHL analogues can be used to non‐invasively and specifically modulate induction of symbiotic bioluminescence via LuxI‐dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.  相似文献   
89.
Bioclimatic velocity: the pace of species exposure to climate change   总被引:1,自引:0,他引:1  
Josep M. Serra‐Diaz  Janet Franklin  Miquel Ninyerola  Frank W. Davis  Alexandra D. Syphard  Helen M. Regan  Makihiko Ikegami 《Diversity & distributions》2014,20(2):169-180
  相似文献   
90.
Toward an understanding of broad-scale patterns of the habitat suitability of fountain grass (Cenchrus setaceus (Forssk.) Morrone,Poaceae)     
Albuquerque  Fábio  Macías-Rodríguez  Miguel Á.  Búrquez  Alberto  Rowe  Helen 《Plant Ecology》2020,221(11):1029-1043
Plant Ecology - Understanding the factors contributing to the introduction and spread of invasive species is crucial to help develop management strategies to control and eradicate them in sensitive...  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号