首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1871篇
  免费   150篇
  2021篇
  2022年   16篇
  2021年   16篇
  2020年   8篇
  2019年   17篇
  2018年   15篇
  2017年   31篇
  2016年   32篇
  2015年   62篇
  2014年   83篇
  2013年   87篇
  2012年   95篇
  2011年   111篇
  2010年   60篇
  2009年   63篇
  2008年   81篇
  2007年   91篇
  2006年   75篇
  2005年   99篇
  2004年   81篇
  2003年   84篇
  2002年   83篇
  2001年   60篇
  2000年   65篇
  1999年   47篇
  1998年   40篇
  1997年   22篇
  1996年   32篇
  1995年   31篇
  1994年   28篇
  1993年   20篇
  1992年   37篇
  1991年   29篇
  1990年   26篇
  1989年   27篇
  1988年   21篇
  1987年   16篇
  1986年   15篇
  1985年   16篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   15篇
  1979年   15篇
  1978年   14篇
  1977年   8篇
  1976年   7篇
  1975年   21篇
  1974年   16篇
  1973年   9篇
  1968年   6篇
排序方式: 共有2021条查询结果,搜索用时 15 毫秒
81.
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.  相似文献   
82.
The most conspicuous feature in idiopathic parkinsonism is the degeneration of pigmented neurons in the substantia nigra. A major problem for the study of the significance of neuromelanin for the development of parkinsonism is that common experimental animals lack neuromelanin in substantia nigra. The aim of this study was to develop an in vitro model that could be used to study the role of neuromelanin in chemically induced toxicity in dopaminergic cells. Cultured neuron-like PC12 cells were exposed to synthetic dopamine melanin (0-1.0 mg/ml) for 48 h, resulting in uptake of dopamine melanin particles into the cells. The intracellular distribution of dopamine melanin granules was similar to that found in neuromelanin-containing neurons. Dopamine melanin, up to 0.5 mg/ml, had negligible effects on ultrastructure, induction of the endoplasmic reticulum-stress protein glucose regulating protein 78, activation of caspase-3 and cell viability. The decreased cell viability in response to the cytotoxic peptide amyloid-beta25-35 was similar in melanin-loaded cells and in control cells without melanin. The results of the studies suggest that melanin-loaded PC12 cells can serve as an in vitro model for studies on the role of neuromelanin for the toxicity of chemicals, in particular neurotoxicants with melanin affinity, in pigmented neurons.  相似文献   
83.
The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (DeltaTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function.  相似文献   
84.
85.
-Amylases are endo-acting retaining enzymes of glycoside hydrolase family 13 with a catalytic (β/)8-domain containing an inserted loop referred to as domain B and a C-terminal anti-parallel β-sheet termed domain C. New insights integrate the roles of Ca2 + , different substrates, and proteinaceous inhibitors for -amylases. Isozyme specific effects of Ca2 +  on the 80% sequence identical barley -amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2 +  with identical ligands. A fully hydrated fourth Ca2 +  at the interface of the AMY2/barley -amylase/subtilisin inhibitor (BASI) complex interacts with catalytic groups in AMY2, and Ca2 +  occupies an identical position in AMY1 with thiomaltotetraose bound at two surface sites. EDTA-treatment, DSC, and activity assays indicate that AMY1 has the highest affinity for Ca2 + . Subsite mapping has revealed that AMY1 has ten functional subsites which can be modified by means protein engineering to modulate the substrate specificity. Other mutational analyses show that surface carbohydrate binding sites are critical for interaction with polysaccharides. The conserved Tyr380 in the newly discovered 'sugar tongs' site in domain C of AMY1 is thus critical for binding to starch granules. Furthermore, mutations of binding sites mostly reduced the degree of multiple attack in amylose hydrolysis. AMY1 has higher substrate affinity than AMY2, but isozyme chimeras with AMY2 domain C and other regions from AMY1 have higher substrate affinity than both parent isozymes. The latest revelations addressing various structural and functional aspects that govern the mode of action of barley -amylases are reported in this review.  相似文献   
86.
PEP-19 is a neuronal calmodulin-binding protein, and as such, a putative modulator of calcium regulated processes. In the present study, we used proteomics technology approaches such as peptidomics and imaging MALDI mass spectrometry, as well as traditional techniques (immunoblotting and in situ hybridization) to identify PEP-19 and, specifically, to measure PEP-19 mRNA and protein levels in an animal model of Parkinson's disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice resulted in a significant decrease in striatal PEP-19 mRNA. Capillary nano-flow liquid chromatography electrospray mass spectrometry analysis of striatal tissue revealed a significant decrease of the PEP-19 protein level. Moreover, imaging MALDI mass spectrometry also showed that PEP-19 protein was predominantly localized to the striatum of the brain tissue cross sections. After MPTP administration, PEP-19 levels were significantly reduced by 30%. We conclude that PEP-19 mRNA and protein expression are decreased in the striatum of a common animal model of Parkinson's disease. Further studies are needed to show the specific involvement of PEP-19 in the neurodegeneration seen in MPTP lesioned animals. Finally, this study has shown that the combination of traditional molecular biology techniques with novel, highly specific and sensitive mass spectrometry methods is advantageous in characterizing molecular events of many diseases, including Parkinson's disease.  相似文献   
87.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   
88.
89.
1. The climate is changing and data-based simulation models can be a valuable tool for predicting population response to such changes and investigate the mechanisms of population change. In this study, a data-based two-species matrix model was constructed to explore the possible effects of elevated sea surface temperature (i.e. climate change) on the interaction between open populations of the south Atlantic barnacle species Chthamalus montagui and the boreal species Semibalanus balanoides in the north-east Atlantic. 2. First, the model was used to perform an elasticity analysis to determine the relative importance of recruitment and survival in the interaction. Further, three scenarios of changes in recruitment, related to climate change, were investigated with model simulations: (i) increased frequencies of low recruitment for S. balanoides; (ii) increased frequencies of high recruitment for C. montagui; (iii) a combination of (i) and (ii). 3. Model simulations showed that in present environmental conditions, S. balanoides occupied most of the space and dominated the interaction through high recruitment and survival. These results matched independent field observations, which validated the model for further analyses. 4. The elasticity analyses showed that although free space was available there was competition for space during recruitment intervals. It was also shown that both populations were sensitive to changes in recruitment. 5. Introducing the three scenarios of recruitment disturbances led to large changes in species abundance and free space. The most significant changes were found when scenario (i) and (ii) were combined, producing a shift in species dynamics towards C. montagui dominance. This demonstrates that recruitment can be an important mechanism in the interaction between populations and that the population response to changes in recruitment depends on the added response of interacting species. 6. In a more general context, this model shows that increased sea surface temperature could rapidly lead to increased competition from southern species at higher latitudes. This might accelerate the effects of climate change on the species distribution at these latitudes and eventually lead to changes in community dynamics on temperate and subarctic shores.  相似文献   
90.
Aggregation of the 40-42 residue amyloid beta-peptide (Abeta) into amyloid plaques is a central event in Alzheimer's disease (AD) pathogenesis. Many proteins have by immunohistochemical techniques been shown to codeposit with Abeta in AD plaques. It is possible that some of these could seed Abeta aggregation and therefore be found in the actual core of the plaque. Here, we present a highly sensitive method for unbiased biochemical analysis of plaque cores. A mild purification protocol based on centrifugation and filtration was used to purify intact plaque cores from human AD brain. The purified plaques were dispensed on a glass slide and viewed in a laser capture microscope, and plaque cores were catapulted into a tube cap by a laser beam. After dissolution in formic acid, plaques were digested and analyzed by liquid chromatography coupled online to electrospray/tandem mass spectrometry. One single plaque was found to be sufficient for positive identification of the main amyloid component. Remarkably, Abeta was the only protein identified when 200 plaques were isolated and analyzed with the present method. Thus, it is possible that no proteins copolymerize with Abeta in the plaque cores and that Abeta alone is sufficient for formation of plaque cores. In support of this notion, core-like structures were observed after incubation of synthetic Abeta for 2 weeks. We suggest that the method described here could be used for the general analysis of amyloid aggregates and inclusion bodies found in other neurodegenerative disorders and that plaque cores in AD brain are molecularly homogeneous structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号