首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   36篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   11篇
  2016年   13篇
  2015年   35篇
  2014年   30篇
  2013年   40篇
  2012年   36篇
  2011年   43篇
  2010年   26篇
  2009年   34篇
  2008年   47篇
  2007年   41篇
  2006年   36篇
  2005年   49篇
  2004年   42篇
  2003年   30篇
  2002年   48篇
  2001年   14篇
  2000年   11篇
  1999年   6篇
  1998年   18篇
  1997年   6篇
  1996年   18篇
  1995年   13篇
  1994年   15篇
  1993年   10篇
  1992年   13篇
  1991年   14篇
  1990年   16篇
  1989年   17篇
  1988年   8篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   13篇
  1982年   7篇
  1981年   8篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1974年   9篇
  1973年   7篇
  1968年   4篇
  1967年   4篇
  1966年   4篇
排序方式: 共有905条查询结果,搜索用时 15 毫秒
781.
In a newly established model of unilateral, irradiation (IR)-induced injury we compared the outcome after IR to the immature and juvenile brain, using rats at postnatal days 9 or 23, respectively. We demonstrate that (i) the immature brains contained more progenitors in the subventricular zone (SVZ) and subgranular zone (SGZ) compared with the juvenile brains; (ii) cellular injury, as judged by activation of caspase 3 and p53, as well as nitrotyrosine formation, was more pronounced in the SVZ and SGZ in the immature brains 6 h after IR; (iii) the number of progenitor and immature cells in the SVZ and SGZ decreased 6 h and 7 days post-IR, corresponding to acute and subacute effects in humans, respectively, these effects were more pronounced in immature brains; (iv) myelination was impaired after IR at both ages, and much more pronounced after IR to immature brains; (v) the IR-induced changes remained significant for at least 10 weeks, corresponding to late effects in humans, and were most pronounced after IR to immature brains. It appears that IR induces both an acute loss of progenitors through apoptosis and a perturbed microenvironment incompatible with normal proliferation and differentiation, and that this is more pronounced in the immature brain.  相似文献   
782.
783.
Much progress has been made in recent years in the understanding of angiogenesis, yet signalling pathways involved remain poorly defined. Here we report that small RhoA GTPase is implicated in the invasion of human microvascular endothelial cells (HMEC-1). Ectopic expression of active-RhoA GTPase induced the expression of MMP-9 metalloproteinase, a key proteinase of the basement membrane, and promoted migration of endothelial cells through a 3D-matrix protein gel. MMP-9 was either directed as vesicular-like patches to the apical side of cells, or addressed to specific membrane sites at the cell surface. Confocal microscopy analyses indeed revealed clustering of MMP-9 in advancing lamellipodia at the forefront of endothelial cells, where this proteinase colocalized with RhoA and CD44, a transmembrane receptor known to be proteolysed in tumor cell progression. In addition, TIMP-1, a natural MMP inhibitor, significantly reduced the invasion of RhoAV14 expressing cells, suggesting that MMP-9 was a critical metalloproteinase responsible, at least partly, for the RhoAV14-induced endothelial cell invasion. We propose that RhoA triggers signalling pathways that, upregulating expression of a proteinase at specific membrane localizations, may confer an highly invasive phenotype to endothelial cells.  相似文献   
784.
Aberration of eukaryotic topoisomerase I catalysis leads to potentially recombinogenic pathways by allowing the joining of heterologous DNA strands. Recently, a new ligation pathway (flap ligation) was presented for vaccinia virus topoisomerase I, in which blunt end cleavage complexes ligate the recessed end of duplex acceptors having a single-stranded 3'-tail. This reaction was suggested to play an important role in the repair of topoisomerase I-induced DNA double-strand breaks. Here, we characterize flap ligation mediated by human topoisomerase I. We demonstrate that cleavage complexes containing the enzyme at a blunt end allow invasion of a 3'-acceptor tail matching the scissile strand of the donor, which facilitates ligation of the recessed 5'-hydroxyl end. However, the reaction was strictly dependent on the length of double-stranded DNA of the donor complexes, and longer stretches of base-pairing inhibited strand invasion. The stabilization of the DNA helix was most probably provided by the covalently bound enzyme itself, since deleting the N-terminal domain of human topoisomerase I stimulated flap ligation. We suggest that stabilization of the DNA duplex upon enzyme binding may play an important role during normal topoisomerase I catalysis by preventing undesired strand transfer reactions. For flap ligation to function in a repair pathway, factors other than topoisomerase I, such as helicases, would be necessary to unwind the DNA duplex and allow strand invasion.  相似文献   
785.
eEF1A, the eukaryotic homologue of bacterial elongation factor Tu, is a well characterized translation elongation factor responsible for delivering aminoacyl-tRNAs to the A-site at the ribosome. Here we show for the first time that eEF1A also associates with the nascent chain distal to the peptidyltransferase center. This is demonstrated for a variety of nascent chains of different lengths and sequences. Interestingly, unlike other ribosome-associated factors, eEF1A also interacts with polypeptides after their release from the ribosome. We demonstrate that eEF1A does not bind to correctly folded full-length proteins but interacts specifically with proteins that are unable to fold correctly in a cytosolic environment. This association was demonstrated both by photo-cross-linking and by a functional refolding assay.  相似文献   
786.
Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around with the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion mutants of the two proteins to interact directly, suggesting that an interaction between the RS-domain of ASF/SF2 and a region between amino acid residues 208-735 on topoisomerase I accounts for the observed effect. Consistently, phosphorylation of the RS-domain with either topoisomerase I or a human cell extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors.  相似文献   
787.
788.
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-Hi:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-Hi:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing the presence of a triple-stranded antiparallel beta sheet consistent with the inhibitor cystine-knot (ICK) motif.  相似文献   
789.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   
790.
DNA topoisomerase I is a nucleolar protein, which relocates to the nucleoplasm in response to drugs stabilizing topoisomerase I.DNA intermediates (e.g. camptothecin). Here we demonstrate that this phenomenon is solely caused by the drug's impact on the interplay between mobility and localization of topoisomerase I in a living cell nucleus. We show by photobleaching of cells expressing biofluorescent topoisomerase I-chimera that the enzyme moves continuously between nucleoli and nucleoplasm. Complex kinetics of fluorescence recovery after photobleaching indicates that two enzyme fractions with different mobility coexist in nucleoli and nucleoplasm. However, the whole complement of topoisomerase I is in continuous flux between these compartments and nucleolar accumulation can plausibly explained by the enzyme's 2-fold lesser overall mobility in nucleoli versus nucleoplasm. Upon addition of camptothecin, topoisomerase I relocates within 30 s from the nucleoli to radial nucleoplasmic structures. At these sites, the enzyme becomes retarded in a dose-dependent manner. Inside nucleoli the mobility of topoisomerase I is much less affected by camptothecin. Thus, the enzyme's distribution equilibrium is shifted toward the nucleoplasm, which causes nucleolar delocalization. In general, topoisomerase I is an entirely mobile nuclear component, unlikely to require specific signaling for movements between nuclear compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号