全文获取类型
收费全文 | 2342篇 |
免费 | 215篇 |
国内免费 | 2篇 |
专业分类
2559篇 |
出版年
2023年 | 7篇 |
2022年 | 15篇 |
2021年 | 30篇 |
2020年 | 24篇 |
2019年 | 18篇 |
2018年 | 41篇 |
2017年 | 34篇 |
2016年 | 59篇 |
2015年 | 107篇 |
2014年 | 129篇 |
2013年 | 132篇 |
2012年 | 175篇 |
2011年 | 157篇 |
2010年 | 105篇 |
2009年 | 104篇 |
2008年 | 143篇 |
2007年 | 154篇 |
2006年 | 177篇 |
2005年 | 146篇 |
2004年 | 121篇 |
2003年 | 124篇 |
2002年 | 138篇 |
2001年 | 29篇 |
2000年 | 20篇 |
1999年 | 24篇 |
1998年 | 35篇 |
1997年 | 22篇 |
1996年 | 30篇 |
1995年 | 24篇 |
1994年 | 32篇 |
1993年 | 18篇 |
1992年 | 28篇 |
1991年 | 15篇 |
1990年 | 13篇 |
1989年 | 19篇 |
1988年 | 12篇 |
1987年 | 8篇 |
1986年 | 7篇 |
1985年 | 13篇 |
1983年 | 7篇 |
1982年 | 5篇 |
1981年 | 4篇 |
1980年 | 7篇 |
1978年 | 4篇 |
1976年 | 10篇 |
1975年 | 4篇 |
1972年 | 4篇 |
1971年 | 4篇 |
1965年 | 4篇 |
1951年 | 2篇 |
排序方式: 共有2559条查询结果,搜索用时 0 毫秒
21.
J?rg Willenborg Claudia Huber Anna Koczula Birgit Lange Wolfgang Eisenreich Peter Valentin-Weigand Ralph Goethe 《The Journal of biological chemistry》2015,290(9):5840-5854
Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [13C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid. 相似文献
22.
Large-conductance calcium-activated potassium channel activity is absent in human and mouse neutrophils and is not required for innate immunity 总被引:2,自引:0,他引:2
Essin K Salanova B Kettritz R Sausbier M Luft FC Kraus D Bohn E Autenrieth IB Peschel A Ruth P Gollasch M 《American journal of physiology. Cell physiology》2007,293(1):C45-C54
Large-conductance Ca2+-activated K+ (BK) channels are reported to be essential for NADPH oxidase-dependent microbial killing and innate immunity in leukocytes. Using human peripheral blood and mouse bone marrow neutrophils, pharmacological targeting, and BK channel gene-deficient (BK/) mice, we stimulated NADPH oxidase activity with 12-O-tetradecanoylphorbol-13-acetate (PMA) and performed patch-clamp recordings on isolated neutrophils. Although PMA stimulated NADPH oxidase activity as assessed by O2 and H2O2 production, our patch-clamp experiments failed to show PMA-activated BK channel currents in neutrophils. In our studies, PMA induced slowly activating currents, which were insensitive to the BK channel inhibitor iberiotoxin. Instead, the currents were blocked by Zn2+, which indicates activation of proton channel currents. BK channels are gated by elevated intracellular Ca2+ and membrane depolarization. We did not observe BK channel currents, even during extreme depolarization to +140 mV and after elevation of intracellular Ca2+ by N-formyl-L-methionyl-L-leucyl-phenylalanine. As a control, we examined BK channel currents in cerebral and tibial artery smooth muscle cells, which showed characteristic BK channel current pharmacology. Iberiotoxin did not block killing of Staphylococcus aureus or Candida albicans. Moreover, we addressed the role of BK channels in a systemic S. aureus and Yersinia enterocolitica mouse infection model. After 3 and 5 days of infection, we found no differences in the number of bacteria in spleen and kidney between BK/ and BK+/+ mice. In conclusion, our experiments failed to identify functional BK channels in neutrophils. We therefore conclude that BK channels are not essential for innate immunity. killing assay; reactive oxygen species; BK-deficient mice; mice infection 相似文献
23.
The phylogeny of Ectocarpus and Kuckuckia strains representing widely separated populations from both hemispheres was inferred from sequence analysis of the internal transcribed spacers of the nuclear ribosomal DNA (ITS 1—5.8S-ITS 2) and the spacer region in the plastid-encoded ribulose- bis -phosphate-carboxylase (RUBISCO) cistron (partial rbc L-spacer-partial rbc S ). Both sequences resulted in matching phylogenies, with the RUBISCO spacer region being most informative at the level of genera and species and the internal transcribed spacer sequences at the level of species and populations. Three major clades were formed by strains previously described by morphology and physiology as Kuckuckia, E. fasciculatus, and E. siliculosus, confirming the validity of these taxa . Ectocarpus and Kuckuckia are regarded as sibling taxa with respect to the outgroup species Feldmannia simplex, Hincksia mitchelliae, and Pilayella littoralis. The clade formed by sexual E. siliculosus strains and most asexual Ectocarpus strains was subdivided into several clades that are consistent with geographical races within E. siliculosus. The inferred phylogeny of Ectocarpus corresponds generally with results from cross-fertilization experiments, morphology, and lipid analysis. A hypothesis on the origin and dispersal of E. siliculosus suggests several natural dispersal events during periods of global cooling as well as recent and possibly anthropogenic dispersal events . 相似文献
24.
Marten Veenhuis Klaas Sjollema Birgit Nordbring-Hertz Wim Harder 《Antonie van Leeuwenhoek》1989,55(4):361-368
A method is presented that enables studies to be made of single nematode-fungal interactions under conditions where fungal growth at the expense of external nutrients is prevented. The nematophagous fungus Arthrobotrys ologospora was used as a model organism in these studies. The method is based on removal of the traps from the vegetative mycelium, immediately after a nematode was captured and transfer of the trap with the captured nematode into a droplet of sterile distilled water placed in a moisture chamber. In the absence of external nutrients, such isolated traps of A. oligospora were fully effective in penetrating and subsequently digesting the captured nematode. Solely vegetative mycelium was formed at the expense of the digested nematode; this developed from the trap that originally had captured the nematode. One advantage of the present method is that studies on various stages of the nematode-fungal interaction can now be performed under conditions that exclude major influences of external nutrients which otherwise could be communicated to the trap cells by way of the vegetative mycelium. 相似文献
25.
Linkage of X-linked retinitis pigmentosa to the hypervariable DNA marker M27β (DXS255) 总被引:2,自引:0,他引:2
Thomas Meitinger Neil A. Fraser Birgit Lorenz Eberhart Zrenner Jan Murken Ian W. Craig 《Human genetics》1989,81(3):283-286
Summary A hypervariable DNA marker is closely linked to one of the most severe forms of night blindness, X-linked retinitis pigmentosa (RP). Affected individuals with X-linked RP, obligate carriers, and ophthalmologically identifiable carriers of the disease were included in a linkage study. The diagnosis was established in five sibships by funduscopic and electrophysiological investigations. When the X-linked probe M27 was used, 2 recombinants out of 29 informative meioses were detected (=0.07 at a maximum lod of 4.75). The hypervariable probe detected two different alleles in 38 of 39 females tested. M27 is therefore a potentially very useful probe for carrier detection and prenatal diagnosis, as well as for addressing the question of heterogeneity of X-linked RP. 相似文献
26.
Allergen‐mediated cross‐linking of the high‐affinity receptor for IgE on mast cells triggers the release of diverse preformed and de novo synthesized immunoregulatory mediators that further the allergic response. A proteomic screen applied to the detection of proteins secreted by the model rat mast cell line, RBL‐2H3 (rat basophilic leukaemia, subline 2H3.1), led to the identification of the cholesterol‐binding glycoprotein, NPC2/RE1 (Niemann–Pick Type C2/epididymal secretory protein 1). Glycosylated NPC2 is secreted early in response to an IgE‐mediated stimulus and co‐localizes with the lysosomal membrane marker, CD63. NPC2 belongs to the ML (MD‐2‐related lipid‐recognition) protein family (155 members), which includes the Toll‐like receptor co‐factors, MD‐1 and MD‐2, and perhaps most interestingly, seven major house dust mite allergens of unknown function (including Der p 2 and Der f 2). Possible role(s) for the protein in the allergic response and future applications of this approach are discussed. 相似文献
27.
Robin Teufel Johannes W. Kung Daniel Kockelkorn Birgit E. Alber Georg Fuchs 《Journal of bacteriology》2009,191(14):4572-4581
A 3-hydroxypropionate/4-hydroxybutyrate cycle operates in autotrophic CO2 fixation in various Crenarchaea, as studied in some detail in Metallosphaera sedula. This cycle and the autotrophic 3-hydroxypropionate cycle in Chloroflexus aurantiacus have in common the conversion of acetyl-coenzyme A (CoA) and two bicarbonates via 3-hydroxypropionate to succinyl-CoA. Both cycles require the reductive conversion of 3-hydroxypropionate to propionyl-CoA. In M. sedula the reaction sequence is catalyzed by three enzymes. The first enzyme, 3-hydroxypropionyl-CoA synthetase, catalyzes the CoA- and MgATP-dependent formation of 3-hydroxypropionyl-CoA. The next two enzymes were purified from M. sedula or Sulfolobus tokodaii and studied. 3-Hydroxypropionyl-CoA dehydratase, a member of the enoyl-CoA hydratase family, eliminates water from 3-hydroxypropionyl-CoA to form acryloyl-CoA. Acryloyl-CoA reductase, a member of the zinc-containing alcohol dehydrogenase family, reduces acryloyl-CoA with NADPH to propionyl-CoA. Genes highly similar to the Metallosphaera CoA synthetase, dehydratase, and reductase genes were found in autotrophic members of the Sulfolobales. The encoded enzymes are only distantly related to the respective three enzyme domains of propionyl-CoA synthase from C. aurantiacus, where this trifunctional enzyme catalyzes all three reactions. This indicates that the autotrophic carbon fixation cycles in Chloroflexus and in the Sulfolobales evolved independently and that different genes/enzymes have been recruited in the two lineages that catalyze the same kinds of reactions.In the thermoacidophilic autotrophic crenarchaeum Metallosphaera sedula, CO2 fixation proceeds via a 3-hydroxypropionate/4-hydroxybutyrate cycle (8, 23, 24, 28) (Fig. (Fig.1).1). A similar cycle may operate in other autotrophic members of the Sulfolobales and in mesophilic Crenarchaea (Cenarchaeum sp. and Nitrosopumilus sp.) of marine group I. The cycle uses elements of the 3-hydroxypropionate cycle that was originally discovered in the phototrophic bacterium Chloroflexus aurantiacus (11, 16, 17, 19, 20, 32, 33). It involves the carboxylation of acetyl-coenzyme A (CoA) to malonyl-CoA by the biotin-dependent acetyl-CoA carboxylase. Malonyl-CoA is reduced via malonate semialdehyde to 3-hydroxypropionate (1), which is further reductively converted to propionyl-CoA (3). Propionyl-CoA is carboxylated to (S)-methylmalonyl-CoA by a propionyl-CoA carboxylase that is similar or identical to acetyl-CoA carboxylase. In fact, only one copy of the genes for the acetyl-CoA/propionyl-CoA carboxylase subunits is present in most Archaea, suggesting that this is a promiscuous enzyme that acts on both acetyl-CoA and propionyl-CoA (24). (S)-Methylmalonyl-CoA is epimerized to (R)-methylmalonyl-CoA, followed by carbon rearrangement to succinyl-CoA by coenzyme B12-dependent methylmalonyl-CoA mutase.Open in a separate windowFIG. 1.Proposed 3-hydroxypropionate/4-hydroxybutyrate cycle in M. sedula and other members of the Sulfolobales. Enzymes are the following: 1, acetyl-CoA carboxylase; 2, malonyl-CoA reductase (NADPH); 3, malonate semialdehyde reductase (NADPH); 4, 3-hydroxypropionyl-CoA synthetase (3-hydroxypropionate-CoA ligase, AMP forming); 5, 3-hydroxypropionyl-CoA dehydratase; 6, acryloyl-CoA reductase (NADPH); 7, propionyl-CoA carboxylase; 8, methylmalonyl-CoA epimerase; 9, methylmalonyl-CoA mutase; 10, succinyl-CoA reductase (NADPH); 11, succinate semialdehyde reductase (NADPH); 12, 4-hydroxybutyryl-CoA synthetase (4-hydroxybutyrate-CoA ligase, AMP-forming); 13, 4-hydroxybutyryl-CoA dehydratase; 14, crotonyl-CoA hydratase; 15, (S)-3-hydroxybutyryl-CoA dehydrogenase (NAD+); 16, acetoacetyl-CoA β-ketothiolase. The two steps of interest are highlighted.In Chloroflexus succinyl-CoA is converted to (S)-malyl-CoA, which is cleaved by (S)-malyl-CoA lyase to acetyl-CoA (thus regenerating the CO2 acceptor molecule) and glyoxylate (16). Glyoxylate is assimilated into cell material by a yet not completely resolved pathway (37). In Metallosphaera succinyl-CoA is converted via 4-hydroxybutyrate to two molecules of acetyl-CoA (8), thus regenerating the starting CO2 acceptor molecule and releasing another acetyl-CoA for biosynthesis. Hence, the 3-hydroxypropionate/4-hydroxybutyrate cycle (Fig. (Fig.1)1) can be divided into two parts. The first part transforms one acetyl-CoA and two bicarbonates into succinyl-CoA, and the second part converts succinyl-CoA to two acetyl-CoA molecules.The reductive conversion of 3-hydroxypropionate to propionyl-CoA requires three enzymatic steps: activation of 3-hydroxypropionate to its CoA ester, dehydration of 3-hydroxypropionyl-CoA to acryloyl-CoA, and reduction of acryloyl-CoA to propionyl-CoA. In C. aurantiacus these three steps are catalyzed by a single large trifunctional enzyme, propionyl-CoA synthase (2). This 200-kDa fusion protein consists of a CoA ligase, a dehydratase, and a reductase domain. Attempts to isolate a similar enzyme from M. sedula failed. Rather, a 3-hydroxypropionyl-CoA synthetase was found (3), suggesting that the other two reactions may also be catalyzed by individual enzymes.Here, we purified the missing enzymes 3-hydroxypropionyl-CoA dehydratase and acryloyl-CoA reductase from M. sedula, identified the coding genes in the genome of M. sedula and other members of the Sulfolobales, produced recombinant enzymes as proof of function, and studied the enzymes in some detail. A comparison with the respective domains of propionyl-CoA synthase from C. aurantiacus indicates that the conversion of 3-hydroxypropionate to propionyl-CoA via the 3-hydroxypropionate route has evolved independently in these two phyla. 相似文献
28.
Andrea Polle Lars O. Baumbusch Christa Oschinski Monika Eiblmeier Vivian Kuhlenkamp Birgit Vollrath Florian Scholz Heinz Rennenberg 《Oecologia》1999,121(2):149-156
Clones of Norway spruce (Picea abies L.) were grown for several years on an altitudinal gradient (1750 m, 1150 m and 800 m above sea level) to study the effects
of environmental × genetic interactions on growth and foliar metabolites (protein, pigments, antioxidants). Clones at the
tree line showed 4.3-fold lower growth rates and contained 60% less chlorophyll (per gram of dry matter) than those at valley
level. The extent of growth reduction was clone-dependent. The mortality of the clones was low and not altitude-dependent.
At valley level, but not at high altitude, needles of mature spruce trees showed lower pigment and protein concentrations
than clones. In general, antioxidative systems in needles of the mature trees and young clones did not increase with increasing
altitude. Needles of all trees at high altitude showed higher concentrations of dehydroascorbate than at lower altitudes,
indicating higher oxidative stress. In one clone, previously identified as sensitive to acute ozone doses, this increase was
significantly higher and the growth reduction was stronger than in the other genotypes. This clone also displayed a significant
reduction in glutathione reductase activity at high altitude. These results suggest that induction of antioxidative systems
is apparently not a general prerequisite to cope with altitude in clones whose mother plants originated from higher altitudes
(about 650–1100 m above sea level, Hercycnic-Carpathian distribution area), but that the genetic constitution for maintenance
of high antioxidative protection is important for stress compensation at the tree line.
Received: 13 October 1998 / Accepted: 22 June 1999 相似文献
29.
Birgit Mosch Anja Mittag Dominik Lenz Thomas Arendt Attila Tárnok 《Cytometry. Part A》2006,69(3):135-138
BACKGROUND: The Laser Scanning Cytometry (LSC) offers quantitative fluorescence analysis of cell suspensions and tissue sections. METHODS: We adapted this technique to immunohistochemical labelled human brain slices. RESULTS: We were able to identify neurons according to their labelling and to display morphological structures such as the lamination of the entorhinal cortex. Further, we were able to distinguish between neurons with and without cyclin B1 expression and we could assign the expression of cyclin B1 to the cell islands of layer II and the pyramidal neurons of layer V of the entorhinal cortex in Alzheimer's disease effected brain. In addition, we developed a method depicting the three-dimensional distribution of the cells in intact tissue sections. CONCLUSIONS: In this pilot experiments we could demonstrate the power of the LSC for the analysis of human brain sections. 相似文献
30.
Gath J Habenstein B Bousset L Melki R Meier BH Böckmann A 《Biomolecular NMR assignments》2012,6(1):51-55
Parkinson’s disease is amongst the most frequent and most devastating neurodegenerative diseases. It is tightly associated
with the assembly of proteins into high-molecular weight protein species, which propagate between neurons in the central nervous
system. The principal protein involved in this process is α-synuclein which is a structural component of the Lewy bodies observed
in diseased brain. We here present the solid-state NMR sequential assignments of a new fibrillar form of this protein, the
first one with a well-ordered and rigid N-terminal part. 相似文献