首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2943篇
  免费   274篇
  国内免费   2篇
  2022年   14篇
  2021年   33篇
  2020年   29篇
  2019年   21篇
  2018年   45篇
  2017年   40篇
  2016年   67篇
  2015年   120篇
  2014年   147篇
  2013年   158篇
  2012年   215篇
  2011年   189篇
  2010年   122篇
  2009年   123篇
  2008年   164篇
  2007年   179篇
  2006年   205篇
  2005年   171篇
  2004年   145篇
  2003年   150篇
  2002年   164篇
  2001年   58篇
  2000年   39篇
  1999年   36篇
  1998年   37篇
  1997年   28篇
  1996年   35篇
  1995年   33篇
  1994年   37篇
  1993年   24篇
  1992年   37篇
  1991年   23篇
  1990年   28篇
  1989年   32篇
  1988年   22篇
  1987年   19篇
  1986年   25篇
  1985年   21篇
  1984年   10篇
  1983年   13篇
  1982年   9篇
  1981年   13篇
  1980年   12篇
  1979年   9篇
  1978年   16篇
  1976年   13篇
  1975年   10篇
  1974年   13篇
  1973年   13篇
  1972年   8篇
排序方式: 共有3219条查询结果,搜索用时 437 毫秒
121.
Fruiting body formation in ascomycetes is a highly complex process that is under polygenic control and is a fundamental part of the fungal sexual life cycle. However, the molecular determinants regulating this cellular process are largely unknown. Here we show that the sterile pro40 mutant is defective in a 120-kDa WW domain protein that plays a pivotal role in fruiting body maturation of the homothallic ascomycete Sordaria macrospora. Although WW domains occur in many eukaryotic proteins, homologs of PRO40 are present only in filamentous ascomycetes. Complementation analysis with different pro40 mutant strains, using full-sized or truncated versions of the wild-type pro40 gene, revealed that the C terminus of PRO40 is crucial for restoring the fertile phenotype. Using differential centrifugation and protease protection assays, we determined that a PRO40-FLAG fusion protein is located within organelles. Further microscopic investigations of fusion proteins with DsRed or green fluorescent protein polypeptides showed a colocalization of PRO40 with HEX-1, a Woronin body-specific protein. However, the integrity of Woronin bodies is not affected in mutant strains of S. macrospora and Neurospora crassa, as shown by fluorescence microscopy, sedimentation, and immunoblot analyses. We discuss the function of PRO40 in fruiting body formation.  相似文献   
122.
123.
Biological Invasions - Artificial coastal structures associated with coastal defences, energy generation, ports, marinas and other developments, are known to support lower levels of biodiversity...  相似文献   
124.
125.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age‐related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First‐degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top‐ranked senescence‐related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3‐overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.  相似文献   
126.
The sympathetic nervous system (SNS) contributes to immune balance by promoting anti-inflammatory B cells. However, whether B cells possess a self-regulating mechanism by which they modulate regulatory B cell (Breg) function is not well understood. In this study, we investigated the ability of B cells to synthesize their own catecholamines upon stimulation with different B cell activators and found that expression of the enzyme tyrosine hydroxylase (TH), required to generate catecholamines, is up-regulated by Toll-like receptor (TLR)9. This TLR9-dependent expression of TH correlated with up-regulation of adrenergic receptors (ADRs), enhanced interleukin (IL)-10 production, and overexpression of the co-inhibitory ligands programmed death ligand 1 (PD-L1) and Fas ligand (FasL). Moreover, concomitant stimulation of ß1-3-ADRs together with a B cell receptor (BCR)/TLR9 stimulus clearly enhances the anti-inflammatory potential of Bregs to suppress CD4 T cells, a crucial population in the pathogenesis of autoimmune diseases, like rheumatoid arthritis (RA). Furthermore, TH up-regulation was also demonstrated in B cells during the course of collagen-induced arthritis (CIA), a mouse model for the investigation of RA. In conclusion, our data show that B cells possess an autonomous mechanism to modulate their regulatory function in an autocrine and/or paracrine manner. These findings help to better understand the function of B cells in the regulation of autoimmune diseases and the interplay of SNS.

The sympathetic nervous system produces neurotransmitters such as catecholamines which contribute to immune balance by promoting anti-inflammatory B cells. This study shows that mouse B cells can themselves synthesize, sense, and transport catecholamines, which in turn modulate regulatory B cell function in an autocrine and/or paracrine manner to suppress T cell proliferation.  相似文献   
127.
This work describes the use of the combination of carbon black as an antibody label, a membrane-based immunochromatographic device, and a flatbed scanner as a quantitative test system. The scanner detected 0.4-345 ng carbon black/mm(2) on a nitrocellulose membrane (0.2-170 amol carbon black/mm(2)) with an imprecision (coefficient of variation, CV) lower than 2% for the carbon black determination and a detection limit of 0.04 ng carbon black/mm(2) (0.02 amol/mm(2)). The detection ability was compared to that obtained with alkaline phosphatase (ALP) using a substrate yielding a chemiluminescent signal (0.02 amol ALP/well), beta-galactosidase using a substrate yielding a fluorescent signal (0.3 amol beta-galactosidase/well), and horseradish peroxidase (HRP) using a substrate yielding a colored signal (5 amol HRP/microtiter well). The carbon black immunochromatographic test for immunoglobulin E (IgE) showed a detection limit of 0.13 pM IgE (0.01 kU/L) after a testing time of 10 min. The scanner detection imprecision for the IgE determination was 0.6% CV in the range 1-10 kU IgE/L when 2.3 mm(2) was used for detection and 1% CV when 0.19 mm(2) was used. A flatbed scanner is an inexpensive instrument with multiple uses, which now also includes the sensitive evaluation of immunoassays.  相似文献   
128.
Bovine muscle carbonic anhydrase (isoenzyme III; BCAIII) exhibited a three-state unfolding process at equilibrium upon denaturation in guanidine hydrochloride (GuHCl). The stable folding intermediate appeared to be of molten globule type. The stability towards GuHCl in terms of mid-point concentrations of denaturation were very similar for BCAIII and human CAII (HCAII). It was further demonstrated that the aromatic amino acid residues contributed significantly to the circular dichroism (CD) spectrum in the far-UV wavelength region during the native-->molten globule state transition. Thus, the ellipiticity change at 218 nm was shown to monitor the loss of tertiary interactions of aromatic side chains at the first unfolding transition as well as the rupture of secondary structure at the second unfolding transition. Similar aromatic contributions to the far-UV CD spectrum, but with varying magnitudes, were also noted for BCAII and HCAII, further emphasizing that interference of aromatic residues should not be neglected at wavelengths that normally are assigned to secondary structural changes.  相似文献   
129.
We have studied the possible mechanisms of endoplasmic reticulum (ER) export and retention by using natural residents of the plant ER. Under normal physiological conditions, calreticulin and the lumenal binding protein (BiP) are efficiently retained in the ER. When the ER retention signal is removed, truncated calreticulin is much more rapidly secreted than truncated BiP. Calreticulin carries two glycans of the typical ER high-mannose form. Both glycans are competent for Golgi-based modifications, as determined from treatment with brefeldin A or based on the deletion of the ER retention motif. In contrast to BiP, calreticulin accumulation is strongly dependent on its retention signal, thereby allowing us to test whether saturation of the retention mechanism is possible. Overexpression of calreticulin led to 100-fold higher levels in dilated globular ER cisternae as well as dilated nuclear envelopes and partial secretion of both BiP and calreticulin. This result shows that both molecules are competent for ER export and supports the concept that proteins are secreted by default. This result also supports previous data suggesting that truncated BiP devoid of its retention motif can be retained in the ER by association with calreticulin. Moreover, even under these saturating conditions, cellular calreticulin did not carry significant amounts of complex glycans, in contrast to secreted calreticulin. This result shows that calreticulin is rapidly secreted once complex glycans have been synthesized in the medial/trans Golgi apparatus and that the modified protein does not appear to recycle back to the ER.  相似文献   
130.
Matrilin-3 is dispensable for mouse skeletal growth and development   总被引:7,自引:0,他引:7       下载免费PDF全文
Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号