首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   25篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   12篇
  2013年   20篇
  2012年   19篇
  2011年   15篇
  2010年   7篇
  2009年   13篇
  2008年   16篇
  2007年   19篇
  2006年   14篇
  2005年   16篇
  2004年   11篇
  2003年   15篇
  2002年   17篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1983年   4篇
  1980年   3篇
  1978年   4篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1966年   3篇
  1935年   1篇
  1930年   1篇
  1926年   1篇
  1914年   5篇
  1913年   1篇
  1912年   5篇
  1911年   2篇
排序方式: 共有341条查询结果,搜索用时 171 毫秒
81.
Removal of the peripheral subunits PSI-C, -D and -E from the photosystem I (PSI) complex of barley requires a urea treatment much harsher than required to remove the similar subunits from cyanobacterial PSI. The resulting PSI barley core was reconstituted by addition of the E. coli expressed subunits PSI-C and -D, and PSI-E isolated from barley. Western blotting, flash photolysis and NADP+ photoreduction measurements demonstrated complete and specific removal of the three subunits from the core and efficient reconstitution of the complex after addition of PSI-C, -D and -E. Flash photolysis reveals that PSI-D is essential for binding of functional PSI-C to the PSI core. An N-terminally truncated barley PSI-D lacking 24 amino acid residues and thus being without the N-terminal extension characteristic for higher plant PSI-D proteins reconstitutes the PSI core to 50% of the level obtained with intact PSI-D as demonstrated by flash photolysis and NADP+ photoreduction measurements. Cyanobacterial PSI-D is functionally equivalent to truncated barley PSI-D with respect to its activity to reconstitute the PSI core. This shows that the N-terminal extension of plant PSI-D plays a key role in binding PSI-C to the core. The plant-specific N-terminus of PSI-D is hypothesized to execute its function through interaction with a plant-specific PSI subunit, possibly PSI-H. An anchoring function of the N-terminus of PSI-D would also explain the harsh treatment needed to obtain a plant PSI core. PSI-E is important for efficient NADP+ reduction but does not influence electron transfer to iron-sulphur centres A/B nor binding of PSI-C. The enhancing effect of PSI-E on NADP+ reduction is independent of the presence of the N-terminus of PSI-D.  相似文献   
82.
83.
The distribution spaces at equilibrium for 3H2O, [14C]urea and 3-O-[14C]-methylglucose were measured in white fat cells using centrifugation through silicone oil at 2500 × g; no significant differences were observed. l-[14C] Glucose added immediately before the centrifugation was used as a marker for the extracellular water space. The calculated intracellular water content of the cells after the centrifugation through oil (e.g. 3H2O space minus l-[14C] glucose space) is an unbiased measure of the water content of the cells in suspension as judged by the following criteria: (1) The intracellular distribution space for 3-O-[14C]methylglucose at equilibrium (methylglucose space minus l-glucose space) was not different from that calculated from a methylglucose wash-out curve. (2) The intracellular content of l-[14C]glucose (half time of efflux about 60 min) in cells preloaded during incubation of the tissue with collagenase was not different in cells recovered by (a) centrifugation through oil at 2500 × g, (b) centrifugation through oil at 600 × g, (c) centrifugation at 600 × g in the absence of oil and (d) filtration on Millipore filters.The intracellular content of water determined on cells from single rats weighing 120–150 g was 2.75 ± 0.55 μl/100 μl fat cells (± S.D., n = 30). The intracellular content of potassium, determined on cells from the same rats, was 252 ± 62 nmols/100 μl fat cells (± S.D., n = 30). The concentration of potassium in the intracellular water was calculated as 104 ± 15 mM (± S.D., n = 30).  相似文献   
84.
85.
86.

Background  

The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma.  相似文献   
87.
The Universal Thermal Climate Index (UTCI) aimed for a one-dimensional quantity adequately reflecting the human physiological reaction to the multi-dimensionally defined actual outdoor thermal environment. The human reaction was simulated by the UTCI-Fiala multi-node model of human thermoregulation, which was integrated with an adaptive clothing model. Following the concept of an equivalent temperature, UTCI for a given combination of wind speed, radiation, humidity and air temperature was defined as the air temperature of the reference environment, which according to the model produces an equivalent dynamic physiological response. Operationalising this concept involved (1) the definition of a reference environment with 50% relative humidity (but vapour pressure capped at 20 hPa), with calm air and radiant temperature equalling air temperature and (2) the development of a one-dimensional representation of the multivariate model output at different exposure times. The latter was achieved by principal component analyses showing that the linear combination of 7 parameters of thermophysiological strain (core, mean and facial skin temperatures, sweat production, skin wettedness, skin blood flow, shivering) after 30 and 120 min exposure time accounted for two-thirds of the total variation in the multi-dimensional dynamic physiological response. The operational procedure was completed by a scale categorising UTCI equivalent temperature values in terms of thermal stress, and by providing simplified routines for fast but sufficiently accurate calculation, which included look-up tables of pre-calculated UTCI values for a grid of all relevant combinations of climate parameters and polynomial regression equations predicting UTCI over the same grid. The analyses of the sensitivity of UTCI to humidity, radiation and wind speed showed plausible reactions in the heat as well as in the cold, and indicate that UTCI may in this regard be universally useable in the major areas of research and application in human biometeorology.  相似文献   
88.
Streptophyte algae and the origin of embryophytes   总被引:1,自引:0,他引:1  

Background

Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae.

Recent Progress

Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants.

Conclusions

The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major advantage for the earliest land plants, even before the origin of the embryo and the sporophyte generation. The complete genomes of a few key streptophyte algae taxa will be required for a better understanding of the colonization of terrestrial habitats by streptophytes.Key words: Chlorophyta, Streptophyta, Embryophyta, Charales, Coleochaetales, Zygnematales, viridiplant phylogeny, land plants, genome evolution, freshwater adaptation, sporophyte origin, diversification, extinction  相似文献   
89.
Vanillin is one of the world''s most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world''s vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker''s yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.In 2007, the global market for flavor and fragrance compounds was an impressive $20 billion, with an annual growth of 11 to 12%. The isolation and naming of vanillin (3-methoxy-4-hydroxybenzaldehyde) as the main component of vanilla flavor in 1859 (8), and the ensuing chemical synthesis in 1874 (41), in many ways marked the true birth of this industry, and this compound remains the global leader in aroma compounds. The original source of vanillin is the seed pod of the vanilla orchid (Vanilla planifolia), which was grown by the Aztecs in Mexico and brought to Europe by the Spaniards in 1520. Production of natural vanillin from the vanilla pod is a laborious and slow process, which requires hand pollination of the flowers and a 1- to 6-month curing process of the harvested green vanilla pods (37). Production of 1 kg of vanillin requires approximately 500 kg of vanilla pods, corresponding to the pollination of approximately 40,000 flowers. Today, only about 0.25% (40 tons out of 16,000) of vanillin sold annually originates from vanilla pods, while most of the remainder is synthesized chemically from lignin or fossil hydrocarbons, in particular guaiacol. Synthetically produced vanillin is sold for approximately $15 per kg, compared to prices of $1,200 to $4,000 per kg for natural vanillin (46).An attractive alternative is bioconversion or de novo biosynthesis of vanillin; for example, vanillin produced by microbial conversion of the plant constituent ferulic acid is marketed at $700 per kilogram under the trade name Rhovanil Natural (produced by Rhodia Organics). Ferulic acid and eugenol are the most attractive plant secondary metabolites amenable for bioconversion into vanillin, since they can be produced at relatively low costs: around $5 per kilogram (37). For the bioconversion of eugenol or ferulic acid into vanillin, several microbial species have been tested, including gram-negative bacteria of the Pseudomonas genus, actinomycetes of the genera Amycolatopsis and Streptomyces, and the basidiomycete fungus Pycnoporus cinnabarinus (19, 23, 25, 27, 31, 34, 35, 36, 45, 48). In experiments where the vanillin produced was absorbed on resins, Streptomyces cultures afforded very high vanillin yields (up to 19.2 g/liter) and conversion rates as high as 55% were obtained (15). Genes for the responsible enzymes from some of these organisms were isolated and expressed in Escherichia coli, and up to 2.9 g/liter of vanillin were obtained by conversion of eugenol or ferulic acid (1, 3, 32, 49).Compared to bioconversion, de novo biosynthesis of vanillin from a primary metabolite like glucose is much more attractive, since glucose costs less than $0.30/kilogram (42). One route for microbial production of vanillin from glucose was devised by Frost and coworker Li (6, 20), combining de novo biosynthesis of vanillic acid in E. coli with enzymatic in vitro conversion of vanillic acid to vanillin. 3-Dehydroshikimic acid is an intermediate in the shikimate pathway for biosynthesis of aromatic amino acids, and the recombinant E. coli was engineered to dehydrate this compound to form protocatechuic acid (3,4-dihydroxybenzoic acid) and methylate this to form vanillic acid. The vanillic acid was subsequently converted into vanillin in vitro using carboxylic acid reductase isolated from Neurospora crassa. The main products of the in vivo step were protocatechuic acid, vanillic acid, and isovanillic acid in an approximate ratio of 9:4:1, indicating a bottleneck at the methylation reaction and nonspecificity of the OMT (O-methyltransferase) enzyme for the meta-hydroxyl group of protocatechuic acid. Serious drawbacks of this scheme are the lack of an in vivo step for the enzymatic reduction of vanillic acid, demanding the addition of isolated carboxylic acid reductase and costly cofactors such as ATP, NADPH, and Mg2+, and the generation of isovanillin as a contaminating side product.In this study, we have genetically engineered single-recombination microorganisms to synthesize vanillin from glucose, according to the metabolic route depicted in Fig. Fig.1.1. To avoid the synthesis of isovanillin as an undesired side product, a large array of OMTs was screened for the desired high substrate specificity, and an appropriate enzyme was identified. A synthetic version of an aromatic carboxylic acid reductase (ACAR) gene, optimized for yeast codon usage, was introduced to achieve the reduction step. The vanillin pathway was introduced into both Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, and significant levels of vanillin production were obtained in both organisms. Vanillin β-d-glucoside is the form in which vanillin accumulates and is stored in the fresh pod of the vanilla orchid (Vanilla planifolia). During the “curing” process of the pod, β-glucosidases are liberated and facilitate a partial conversion of the vanillin β-d-glucoside into vanillin. Upon consumption or application, the conversion of vanillin β-d-glucoside into free vanillin by enzymes in the saliva or in the skin microflora can provide for a slow-release effect that prolongs and augments the sensory event, as is the case for other flavor glycosides investigated, such as menthol glucoside (14, 16). In addition to the increased value of vanillin β-d-glucoside as an aroma or flavor compound, production of the glucoside in yeast may offer several advantages. Vanillin β-d-glucoside is more water soluble than vanillin, but most importantly, compounds such as vanillin in high concentrations are toxic to many living cells (4). It has been shown that glucosides of toxic compounds are less toxic to yeasts (24). We found this to be the case with vanillin and S. cerevisiae yeast as well. Thus, to facilitate storage and accumulation of higher vanillin yields, we introduced a step for vanillin glucosylation in S. pombe.Open in a separate windowFIG. 1.Biosynthetic scheme for de novo biosynthesis of vanillin in Schizosaccharomyces pombe and outline of the different vanillin catabolites and metabolic side products observed in different yeast strains and constructs. Gray arrows, primary metabolic reactions in yeast; black arrows, enzyme reactions introduced by metabolic engineering; diagonally striped arrows, undesired inherent yeast metabolic reactions.  相似文献   
90.
Almost 10,000 single nucleotide polymorphisms (SNPs) had been identified in the RT1 complex, the major histocompatibility complex of the rat, but less than ∼0.5% have been characterized. In the context of the incomplete characterization of most SNPs, simple sequence length polymorphism (SSLP) marker development is still valuable for understanding the involvement of genes in the RT1 in controlling disease susceptibility, since SSLPs are user-friendly and cost-effective genetic markers in rat genome analysis. In this study, we developed a set of 67 SSLP markers, including 57 novel markers, to cover the entire RT1 complex and then created genetic profiles across 67 rat strains. These markers are located almost every 50 kb in the RT1 complex and show comparable polymorphism; the average number of alleles was 8.04 ± 3.44 and the average polymorphic rate was 71 ± 23%. Interestingly, markers failing to amplify polymerase chain reaction products were highly observed in all strains except for BN/SsNHsd, which suggests the existence of highly variable genomic sequences or genomic rearrangements in the RT1 region across rat strains. Based on the phylogenic tree and individual genotyping data, we identified 28 SSLP marker haplotypes in the RT1 region that roughly consisted of three genomic regions. These findings provided new insight into the genomic organization of the RT1 complex and we recognized the need of additional RT1 genome sequences in different strains. Owing to the accuracy and ease of determination, PCR-based SSLP genotyping could replace serological typing in genetic analyses and characterization of rat major histocompatibility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号