首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1508篇
  免费   76篇
  国内免费   4篇
  2023年   8篇
  2022年   18篇
  2021年   34篇
  2020年   31篇
  2019年   26篇
  2018年   40篇
  2017年   41篇
  2016年   64篇
  2015年   51篇
  2014年   85篇
  2013年   92篇
  2012年   93篇
  2011年   83篇
  2010年   48篇
  2009年   52篇
  2008年   66篇
  2007年   57篇
  2006年   59篇
  2005年   60篇
  2004年   42篇
  2003年   29篇
  2002年   38篇
  2001年   27篇
  2000年   33篇
  1999年   26篇
  1998年   9篇
  1997年   14篇
  1996年   18篇
  1994年   17篇
  1993年   10篇
  1992年   18篇
  1991年   15篇
  1990年   18篇
  1989年   15篇
  1988年   17篇
  1987年   12篇
  1986年   21篇
  1985年   17篇
  1984年   24篇
  1983年   9篇
  1982年   10篇
  1981年   7篇
  1979年   10篇
  1978年   11篇
  1977年   8篇
  1974年   10篇
  1973年   10篇
  1971年   12篇
  1970年   10篇
  1969年   6篇
排序方式: 共有1588条查询结果,搜索用时 78 毫秒
81.
82.
83.
Cancer and noncancer risk of arsenic exposure depends on arsenic intake through drinking water and diets. The present study evaluated the probability of noncancer effects of arsenic exposure from drinking water and diets in a cohort of 82 participants in arsenic-endemic rural areas, considering arsenic-safe and arsenic-unsafe water uses for three consecutive years. The risk assessment included the collection of last 24 hours' diet replica and urine of the participants followed by total arsenic analysis of the same. Toxic dose emerging from exposure duration is a nonlinear variable. So, Bayesian estimation of the data for noncancer risk assessment of the variable arsenic consumption was performed. In spite of using arsenic-safe water, we observed arsenic consumption and release. Participants with skin lesions had more arsenic in urine than participants without skin lesions. Future risk for participants without skin lesions was twice due to less arsenic release in urine. For the first time, Bayesian simulation was used to assess noncancer risk on a cohort for a consecutive three-year study. A significant finding was the higher assessed noncancer risk of the participants without skin lesions than the participants with skin lesions.  相似文献   
84.
The structurally related glutathione S-transferase isoforms GSTA1-1 and GSTA4-4 differ greatly in their relative catalytic promiscuity. GSTA1-1 is a highly promiscuous detoxification enzyme. In contrast, GSTA4-4 exhibits selectivity for congeners of the lipid peroxidation product 4-hydroxynonenal. The contribution of protein dynamics to promiscuity has not been studied. Therefore, hydrogen/deuterium exchange mass spectrometry (H/DX) and fluorescence lifetime distribution analysis were performed with glutathione S-transferases A1-1 and A4-4. Differences in local dynamics of the C-terminal helix were evident as expected on the basis of previous studies. However, H/DX demonstrated significantly greater solvent accessibility throughout most of the GSTA1-1 sequence compared with GSTA4-4. A Phe-111/Tyr-217 aromatic-aromatic interaction in A4-4, which is not present in A1-1, was hypothesized to increase core packing. "Swap" mutants that eliminate this interaction from A4-4 or incorporate it into A1-1 yield H/DX behavior that is intermediate between the wild type templates. In addition, the single Trp-21 residue of each isoform was exploited to probe the conformational heterogeneity at the intrasubunit domain-domain interface. Excited state fluorescence lifetime distribution analysis indicates that this core residue is more conformationally heterogeneous in GSTA1-1 than in GSTA4-4, and this correlates with greater stability toward urea denaturation for GSTA4-4. The fluorescence distribution and urea sensitivity of the mutant proteins were intermediate between the wild type templates. The results suggest that the differences in protein dynamics of these homologs are global. The results suggest also the possible importance of extensive conformational plasticity to achieve high levels of functional promiscuity, possibly at the cost of stability.  相似文献   
85.
86.
87.
An elevated level of homocysteine (Hcy) leads to hyperhomocysteinemia (HHcy), which results in vascular dysfunction and pathological conditions identical to stroke symptoms. Hcy increases oxidative stress and leads to increase in blood–brain barrier permeability and leakage. Hydrogen sulfide (H2S) production during the metabolism of Hcy has a cerebroprotective effect, although its effectiveness in Hcy-induced neurodegeneration and neurovascular permeability is less explored. Therefore, the current study was designed to perceive the neuroprotective effect of exogenous H 2S against HHcy, a cause of neurodegeneration. To test this hypothesis, we used four groups of mice: control, Hcy, control + sodium hydrosulfide hydrate (NaHS), and Hcy + NaHS, and an HHcy mice model in Swiss albino mice by giving a dose of 1.8 g of dl -Hcy/L in drinking for 8–10 weeks. Mice that have 30 µmol/L Hcy were taken for the study, and a H 2S supplementation of 20 μmol/L was given for 8 weeks to all groups of mice. HHcy results in the rise of the levels of superoxide and nitrite, although a concomitant decrease in the level of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and arginase in oxidative stress and a concomitant decrease in the endogenous level of H 2S. Although H 2S supplementation ameliorated, the effect of HHcy and the levels of H 2S returned to the average level in HHcy animals supplemented with H 2S. Interestingly, H 2S supplementation ameliorated neurovascular remodeling and neurodegeneration. Thus, our study suggested that H 2S could be a beneficial therapeutic candidate for the treatment of Hcy-associated neurodegeneration, such as stroke and neurovascular disorders.  相似文献   
88.
The analysis of estrogen receptor (ER) expression in breast carcinomas plays a crucial role in determining the endocrine responsiveness of tumors for systemic adjuvant therapy. Conventionally, the ER levels in breast carcinomas had been detected using the dextran-coated charcoal assay and radioimmunoassay, which are now substituted with safer and economic antibody-based assays such as immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Despite a gold (Au) standard method, the IHC has been criticized for factors such as tissue fixation, antibody selection, and threshold staining for result interpretation that could falsify test accuracy and reproducibility. The quest for alternative methods of ER quantification in tissue samples paved the way for aptamer-based diagnostics. Previously, we have isolated a DNA aptamer against human ER alpha (ERα) using an in vitro evolution system. In this study, we developed an electrochemical sensor using the 76-nucleotide DNA ERα- aptamer for rapid, precise, and cost-effective detection of ERα expression in human breast cancer patients. The aptasensor was constructed by covalently immobilizing the thiolated ERα- aptamer onto a screen-printed Au electrode. Construction of aptasensors was confirmed through atomic force microscopy and differential pulse voltammetry measurements. A detection limit of 0.001 ng/ml was calculated for full-length ERα (66.2 kDa) in a detection time of 10 min. Analysis of the cancerous breast tissue samples using the ELISA and aptasensor methods enabled distinctive classification of samples into the categories of ER −ve, weak ER +ve, and strong ER +ve samples. The current change of this aptasensor lies within 5% after a storage of 60 days at 4°C. Further studies on a reasonably large sample size are required to realize the clinical potential of the sensor.  相似文献   
89.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号