首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8150篇
  免费   656篇
  国内免费   588篇
  2024年   10篇
  2023年   86篇
  2022年   182篇
  2021年   423篇
  2020年   307篇
  2019年   346篇
  2018年   371篇
  2017年   251篇
  2016年   356篇
  2015年   503篇
  2014年   570篇
  2013年   599篇
  2012年   760篇
  2011年   633篇
  2010年   385篇
  2009年   369篇
  2008年   408篇
  2007年   378篇
  2006年   347篇
  2005年   276篇
  2004年   237篇
  2003年   202篇
  2002年   175篇
  2001年   143篇
  2000年   114篇
  1999年   133篇
  1998年   79篇
  1997年   89篇
  1996年   80篇
  1995年   74篇
  1994年   85篇
  1993年   60篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9394条查询结果,搜索用时 15 毫秒
141.

(R)-Mandelic acid (R-MA) is a key precursor for the synthesis of semi-synthetic penicillin, cephalosporin, anti-obesity drugs, antitumor agents, and chiral resolving agents for the resolution of racemic alcohols and amines. In this study, an enzymatic method for the large-scale production of R-MA by a stereospecific nitrilase in an aqueous system was developed. The nitrilase activity of the Escherichia coli BL21(DE3)/pET-Nit whole cells reached 138.6 U/g in a 20,000-L fermentor. Using recombinant E. coli cells as catalyst, 500 mM R,S-mandelonitrile (R,S-MN) was resolved into 426 mM (64.85 g/L) R-MA within 8 h, and the enantiomeric excess (ee) value of R-MA reached 99%. During the purification process, pure R-MA with a recovery rate of 78.8% was obtained after concentration and crystallization. This study paved the foundation for the upscale production of R-MA using E. coli whole cells as biocatalyst.

  相似文献   
142.
143.
To detect the genomic constitutions and investigate the evolutionary relationships between Campeiostachys Drobov and Elymus L. species, we have cloned and analyzed 271 5S nuclear ribosomal DNA sequences from 27 accessions of these species, mostly of Chinese origin. We identified Long H1, Short S1, and Long Y1 unit classes in nine Campeiostachys or Elymus species. The identification of the three orthologous unit classes was confirmed by the neighbor‐joining tree of each unit class from PAUP and the phylogeny tree of three unit classes from MrBayes. The results suggested that these Elymus species comprise StYH haplomes and should be included in Campeiostachys. The phylogeny tree showed a clear separation between the S1 unit class and Y1 unit class. However, Y1 unit class sequences formed a sister clade to the S1 unit class, implying that although the St and Y haplomes might have some affinity, they are distinct from one another. The phylogeny tree also indicated that the five species in sect. Turczaninovia (C. dahurica var. cylindrica, C. dahurica var. dahurica, C. dahurica var. tangutorum, E. purpuraristatus, and E. dahuricus Turcz. ex Griseb. var. violeus C. P. Wang & H. L. Yang) might share a more recent common ancestor, whereas the four species in sect. Elymus (C. nutans, E. breviaristatus (Keng) Keng ex Keng f., E. sinosubmuticus (Keng) Keng f., and E. atratus (Nevski) Hand.‐Mazz.) share a close relationship. By identifying only one type of unit class for each haplome, we propose that the 5S nuclear ribosomal DNA sequences of species within Campeiostachys might have undergone haplome‐specific concerted evolution.  相似文献   
144.
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.  相似文献   
145.
146.
147.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   
148.
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号