首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57872篇
  免费   4597篇
  国内免费   4509篇
  66978篇
  2024年   142篇
  2023年   792篇
  2022年   1852篇
  2021年   3045篇
  2020年   2086篇
  2019年   2502篇
  2018年   2346篇
  2017年   1805篇
  2016年   2544篇
  2015年   3629篇
  2014年   4381篇
  2013年   4439篇
  2012年   5287篇
  2011年   4765篇
  2010年   2884篇
  2009年   2601篇
  2008年   2938篇
  2007年   2634篇
  2006年   2261篇
  2005年   1886篇
  2004年   1510篇
  2003年   1421篇
  2002年   1072篇
  2001年   909篇
  2000年   889篇
  1999年   811篇
  1998年   499篇
  1997年   454篇
  1996年   477篇
  1995年   422篇
  1994年   413篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
101.
The molecular mechanisms underlying the involvement of oligodendrocytes in formation of the nodes of Ranvier (NORs) remain poorly understood. Here we show that oligodendrocyte-myelin glycoprotein (OMgp) aggregates specifically at NORs. Nodal location of OMgp does not occur along demyelinated axons of either Shiverer or proteolipid protein (PLP) transgenic mice. Over-expression of OMgp in OLN-93 cells facilitates process outgrowth. In transgenic mice in which expression of OMgp is down-regulated, myelin thickness declines, and lateral oligodendrocyte loops at the node-paranode junction are less compacted and even join together with the opposite loops, which leads to shortened nodal gaps. Notably, each of these structural abnormalities plus modest down-regulation of expression of Na(+) channel alpha subunit result in reduced conduction velocity in the spinal cords of the mutant mice. Thus, OMgp that is derived from glia has distinct roles in regulating nodal formation and function during CNS myelination.  相似文献   
102.
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling and is involved in the development of numerous mitochondrial-related diseases; however, a functional role for Mfn2 in chronic liver cholestasis which is characterized by increased levels of toxic bile acids remain unknown. Therefore, the aims of this study were to evaluate the expression levels of Mfn2 in liver samples from patients with extrahepatic cholestasis and to investigate the role Mfn2 during bile acid induced injury in vitro. Endogenous Mfn2 expression decreased in patients with extrahepatic cholestasis. Glycochenodeoxycholic acid (GCDCA) is the main toxic component of bile acid in patients with extrahepatic cholestasis. In human normal hepatocyte cells (L02), Mfn2 plays an important role in GCDCA-induced mitochondrial damage and changes in mitochondrial morphology. In line with the mitochondrial dysfunction, the expression of Mfn2 decreased significantly under GCDCA treatment conditions. Moreover, the overexpression of Mfn2 effectively attenuated mitochondrial fragmentation and reversed the mitochondrial damage observed in GCDCA-treated L02 cells. Notably, a truncated Mfn2 mutant that lacked the normal C-terminal domain lost the capacity to induce mitochondrial fusion. Increasing the expression of truncated Mfn2 also had a protective effect against the hepatotoxicity of GCDCA. Taken together, these findings indicate that the loss of Mfn2 may play a crucial role the pathogenesis of the liver damage that is observed in patients with extrahepatic cholestasis. The findings also indicate that Mfn2 may directly regulate mitochondrial metabolism independently of its primary fusion function. Therapeutic approaches that target Mfn2 may have protective effects against hepatotoxic of bile acids during cholestasis.  相似文献   
103.
104.
It has been verified that prochymosin is characterized by a two-stage refolding: dilution of unfolded protein into pH 11 buffer followed by neutralization at pH 8; the high-pH step is indispensable. Here we demonstrate that one-stage refolding around pH 8 can be achieved when GroE or 10-fold molar excess (rather than catalytic concentration) of protein disulfide isomerase (PDI) over prochymosin is present. The helping effect varies with the oxidation states of prochymosin. GroE and PDI increase the reactivation of the unfolded, partially reduced and the unfolded, oxidized prochymosin from 5% to 40% and from 50% to 100%, respectively. For the unfolded and fully reduced prochymosin, GroE does not have a positive effect, whereas PDI promotes renaturation from 2% to 28%. Based on our previous and present observations, we propose that at pH 8 there may be two kinds of incorrect interactions within and between prochymosin polypeptides leading to unproductive pathways: one prevents disulfide rearrangement, which can be avoided by high pH; the other interferes with acquisition of native conformation, which can be relieved by GroE and PDI.  相似文献   
105.
Avian pluripotent stem cells   总被引:11,自引:0,他引:11  
Pluripotent embryonic stem cells are undifferentiated cells capable of proliferation and self-renewal and have the capacity to differentiate into all somatic cell types and the germ line. They provide an in vitro model of early embryonic differentiation and are a useful means for targeted manipulation of the genome. Pluripotent stem cells in the chick have been derived from stage X blastoderms and 5.5 day gonadal primordial germ cells (PGCs). Blastoderm-derived embryonic stem cells (ESCs) have the capacity for in vitro differentiation into embryoid bodies and derivatives of the three primary germ layers. When grafted onto the chorioallantoic membrane, the ESCs formed a variety of differentiated cell types and attempted to organize into complex structures. In addition, when injected into the unincubated stage X blastoderm, the ESCs can be found in numerous somatic tissues and the germ line. The potential give rise to somatic and germ line chimeras is highly dependent upon the culture conditions and decreases with passage. Likewise, PGC-derived embryonic germ cells (EGCs) can give rise to simple embryoid bodies and can undergo some differentiation in vitro. Interestingly, chicken EG cells contribute to somatic lineages when injected into the stage X blastoderm, but only germ line chimeras have resulted from EGCs injected into the vasculature of the stage 16 embryo. To date, no lines of transgenic chickens have been generated using ESCs or EGCs. Nevertheless, progress towards the culture of avian pluripotent stem cells has been significant. In the future, the answers to fundamental questions regarding segregation of the avian germ line and the molecular basis of pluripotency should foster the full use of avian pluripotent stem cells.  相似文献   
106.
107.
The DNA-binding protein AT-Rich Interactive Domain 3B (ARID3B) is elevated in ovarian cancer and increases tumor growth in a xenograft model of ovarian cancer. However, relatively little is known about ARID3B''s function. In this study we perform the first genome wide screen for ARID3B direct target genes and ARID3B regulated pathways. We identified and confirmed numerous ARID3B target genes by chromatin immunoprecipitation (ChIP) followed by microarray and quantitative RT-PCR. Using motif-finding algorithms, we characterized a binding site for ARID3B, which is similar to the previously known site for the ARID3B paralogue ARID3A. Functionality of this predicted site was demonstrated by ChIP analysis. We next demonstrated that ARID3B induces expression of its targets in ovarian cancer cell lines. We validated that ARID3B binds to an epidermal growth factor receptor (EGFR) enhancer and increases mRNA expression. ARID3B also binds to the promoter of Wnt5A and its receptor FZD5. FZD5 is highly expressed in ovarian cancer cell lines, and is upregulated by exogenous ARID3B. Both ARID3B and FZD5 expression increase adhesion to extracellular matrix (ECM) components including collagen IV, fibronectin and vitronectin. ARID3B-increased adhesion to collagens II and IV require FZD5. This study directly demonstrates that ARID3B binds target genes in a sequence-specific manner, resulting in increased gene expression. Furthermore, our data indicate that ARID3B regulation of direct target genes in the Wnt pathway promotes adhesion of ovarian cancer cells.  相似文献   
108.

Background

Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation.

Methods

We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test.

Results

We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2?>?apoE3?>?apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state.

Conclusions

Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
  相似文献   
109.
SUMOylation of proteins is an important regulatory element in modulating protein function and has been implicated in the pathogenesis of numerous human diseases such as cancers, neurodegenerative diseases, brain injuries, diabetes, and familial dilated cardiomyopathy. Growing evidence has pointed to a significant role of SUMO in kidney diseases such as DN, RCC, nephritis, AKI, hypertonic stress and nephrolithiasis. Recently, emerging studies in podocytes demonstrated that SUMO might have a protective role against podocyte apoptosis. However, the SUMO code responsible for beneficial outcome in the kidney remains to be decrypted. Our recent experiments have revealed that the expression of both SUMO and SUMOylated proteins is appreciably elevated in hypoxia‐induced tubular epithelial cells (TECs) as well as in the unilateral ureteric obstruction (UUO) mouse model, suggesting a role of SUMO in TECs injury and renal fibrosis. In this review, we attempt to decipher the SUMO code in the development of kidney diseases by summarizing the defined function of SUMO and looking forward to the potential role of SUMO in kidney diseases, especially in the pathology of renal fibrosis and CKD, with the goal of developing strategies that maximize correct interpretation in clinical therapy and prognosis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号