首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  2021年   2篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   9篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1996年   1篇
  1986年   1篇
  1979年   2篇
  1974年   1篇
  1962年   1篇
排序方式: 共有74条查询结果,搜索用时 390 毫秒
51.
Bink HH  Roepan SK  Pleij CW 《Proteins》2004,55(2):236-244
RNA-coat protein interactions in turnip yellow mosaic virus (TYMV) have been shown to involve low pK proton-donating groups. Two different types of interaction have been proposed. In the so-called type I interaction, protonated C-residues interact with acidic amino acids at low pH, thereby providing a rationale for the high C-content (38%) of the genomic RNA. The type II interaction involves charged histidines interacting with phosphates of the RNA backbone. Site-directed mutagenesis of the TYMV coat protein and subsequent in vivo analysis were performed to distinguish between these two types of RNA-protein interaction. The results reveal a prominent role for the histidines H68 and H180, since mutation to an alanine residue inhibits symptom development on secondary leaves, indicating that spreading of the virus in the plant is blocked. Viral RNA and coat protein synthesis are not altered, showing that these two histidines may play a role in the process of RNA encapsidation. Overexpression of the TYMV coat protein in Escherichia coli leads to the formation of bona fide capsids, showing that the two histidines are not critical in capsid assembly. Mutagenesis of the acidic amino acids D11, E135, and D143 to alanine apparently did not interfere with virus viability. The functional role of the histidines during the infection cycle is discussed in terms of the structure of the coat protein, both at the level of amino acid sequence conservation among the members of the Tymoviridae family and as the three-dimensional structure of the coat protein.  相似文献   
52.
The RNA genome of turnip yellow mosaic virus (TYMV) consists of more than 6,000 nucleotides. During a study of the roles of the two hairpins located in its 90-nucleotide 5' untranslated region, it was observed that stabilization of the 5'-proximal hairpin leads to a delay in the development of symptoms on plants. This delay in symptom development for both locally and systemically infected leaves was found to be dependent on a change in the free energy of the hairpin caused by introduced mutations. A protoplast transfection assay revealed that the accumulation of plus-strand full-length RNA and subgenomic RNA, as well as protein expression levels, was affected by hairpin stability. Stabilization of this hairpin inhibited translation. A model is proposed in which a destabilized 5'-proximal hairpin allows maximal translation of the viral proteins. It is suggested that this hairpin may exist in close proximity to the 5' cap as long as its stability is low enough to enable translation. However, at an acidic pH, the hairpin structure becomes more stable and is functionally transformed into the initiation signal for viral packaging. Slightly acidic conditions can be found in chloroplasts, where TYMV assembly is driven by a low pH generated by active photosynthesis.  相似文献   
53.
54.
The narrow genetic base of peach (Prunus persica L. Batsch) challenges efforts to accurately dissect the genetic architecture of complex traits. Standardized phenotypic assessment of pedigree-linked breeding germplasm and new molecular strategies and analytical approaches developed and conducted during the RosBREED project for enabling marker-assisted breeding (MAB) in Rosaceae crops has overcome several aspects of this challenge. The genetic underpinnings of fruit size (fruit equatorial diameter (FD)) and weight (fresh weight (FW)), two most important components of yield, were investigated using the pedigree-based analysis (PBA) approach under a Bayesian framework which has emerged as an alternative strategy to study the genetics of quantitative traits within diverse breeding germplasm across breeding programs. In this study, a complex pedigree with the common founder “Orange Cling” was identified and FD and FW data from 2011 and 2012 analyzed. A genetic model including genetic additive and dominance effects was considered, and its robustness was evaluated by using various prior and initial values in the Markov chain Monte Carlo procedure. Five QTLs were identified which accounted for up to 29 and 17 % of the phenotypic variation for FD and FW, respectively. Additionally, genomic breeding values were obtained for both traits, with accuracies >85 %. This approach serves as a model study for performing PBA across diverse pedigrees. By incorporating multiple breeding programs, the method and results presented support and highlight the ability of this strategy to identify genomic resources as targets for DNA marker development and subsequent MAB within each program.  相似文献   
55.
56.
M C Bink  J A Van Arendonk 《Genetics》1999,151(1):409-420
Augmentation of marker genotypes for ungenotyped individuals is implemented in a Bayesian approach via the use of Markov chain Monte Carlo techniques. Marker data on relatives and phenotypes are combined to compute conditional posterior probabilities for marker genotypes of ungenotyped individuals. The presented procedure allows the analysis of complex pedigrees with ungenotyped individuals to detect segregating quantitative trait loci (QTL). Allelic effects at the QTL were assumed to follow a normal distribution with a covariance matrix based on known QTL position and identity by descent probabilities derived from flanking markers. The Bayesian approach estimates variance due to the single QTL, together with polygenic and residual variance. The method was empirically tested through analyzing simulated data from a complex granddaughter design. Ungenotyped dams were related to one or more sons or grandsires in the design. Heterozygosity of the marker loci and size of QTL were varied. Simulation results indicated a significant increase in power when ungenotyped dams were included in the analysis.  相似文献   
57.
58.
Direct utilization of mannose for mammalian glycoprotein biosynthesis   总被引:4,自引:1,他引:3  
Direct utilization of mannose for glycoprotein biosynthesis has not been studied because cellular mannose is assumed to be derived entirely from glucose. However, animal sera contain sufficient mannose to force uptake through glucose-tolerant, mannose-specific transporters. Under physiological conditions this transport system provides 75% of the mannose for protein glycosylation in human hepatoma cells despite a 50- to 100-fold higher concentration of glucose. This suggests that direct use of mannose is more important than conversion from glucose. Consistent with this finding the liver is low in phosphomannose isomerase activity (fructose-6-P<->mannose-6-P), the key enzyme for supplying glucose-derived mannose to the N-glycosylation pathway. [2- 3H] Mannose is rapidly absorbed from the intestine of anesthetized rats and cleared from the blood with a t1/2of 30 min. After a 30 min lag, label is incorporated into plasma glycoproteins, and into glycoproteins of all organs during the first hour. Most (87%) of the initial incorporation occurs in the liver, but this decreases as radiolabeled plasma glycoproteins increase. Radiolabel in glycoproteins also increases 2- to 6-fold in other organs between 1-8 h, especially in lung, skeletal muscle, and heart. These organs may take up hepatic- derived radiolabeled plasma glycoproteins. Significantly, the brain, which is not exposed to plasma glycoproteins, shows essentially no increase in radiolabel. These results suggest that mammals use mannose transporters to deliver mannose from blood to the liver and other organs for glycoprotein biosynthesis. Additionally, contrary to expectations, most of the mannose for glycoprotein biosynthesis in cultured hepatoma cells is derived from mannose, not glucose. Extracellular mannose may also make a significant contribution to glycoprotein biosynthesis in the intact organism.   相似文献   
59.
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2‐hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast‐to‐hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24‐ceramides in membranes of RsAFP2‐treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.  相似文献   
60.
The phylogeny and substitution rates of the mammalian X chromosome- located and autosomal phosphoglycerate kinase and pyruvate dehydrogenase genes were investigated. Compatibility analysis was used to show reticulate evolution in these genes. Analysis of the marsupial, mouse, and human phosphoglycerate kinase genes suggests that at least two recombination events have taken place, one occurring about the time of the placental-marsupial split involving exons 1-5 and the other before the primate-rodent split involving exons 9-10. Similar analysis of the pyruvate dehydrogenase genes indicates a recombination event involving exons 2-3 at a time before the primate-rodent split and a gene conversion between exons 3-4 in the human somatic and testis- specific pyruvate dehydrogenase genes after the primate-rodent split. This demonstrates that genetic exchange can occur between paralogous genes at widely separated chromosomal locations. Estimation of nucleotide substitution rates in these genes confirmed a higher substitution rate in the pyruvate dehydrogenase genes. In the phosphoglycerate kinase genes, there is no difference between the substitution rates in mice and humans and between the X chromosome- and autosome-located genes. A greater substitution rate was noted in the mouse autosomal pyruvate dehydrogenase gene when compared with the other mouse and human genes. This may be a result of either directional natural selection or a relaxation of functional constraint at this specific gene.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号