首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78907篇
  免费   6553篇
  国内免费   4806篇
  90266篇
  2024年   138篇
  2023年   901篇
  2022年   2075篇
  2021年   3604篇
  2020年   2326篇
  2019年   2840篇
  2018年   2872篇
  2017年   2029篇
  2016年   2872篇
  2015年   4585篇
  2014年   5294篇
  2013年   5961篇
  2012年   6897篇
  2011年   6355篇
  2010年   3818篇
  2009年   3372篇
  2008年   4113篇
  2007年   3652篇
  2006年   3171篇
  2005年   2679篇
  2004年   2276篇
  2003年   1972篇
  2002年   1730篇
  2001年   1559篇
  2000年   1565篇
  1999年   1447篇
  1998年   847篇
  1997年   797篇
  1996年   808篇
  1995年   736篇
  1994年   687篇
  1993年   530篇
  1992年   818篇
  1991年   657篇
  1990年   601篇
  1989年   531篇
  1988年   421篇
  1987年   362篇
  1986年   336篇
  1985年   299篇
  1984年   221篇
  1983年   199篇
  1982年   112篇
  1981年   118篇
  1980年   86篇
  1979年   147篇
  1978年   84篇
  1977年   95篇
  1975年   111篇
  1974年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF.  相似文献   
993.
994.
The arms race between fungal pathogens and plant hosts involves recognition of fungal effectors to induce host immunity. Although various fungal effectors have been identified, the effector functions of ribonucleases are largely unknown. Herein, we identified a ribonuclease secreted by Verticillium dahliae (VdRTX1) that translocates into the plant nucleus to modulate immunity. The activity of VdRTX1 causes hypersensitive response (HR)‐related cell death in Nicotiana benthamiana and cotton. VdRTX1 possesses a signal peptide but is unlikely to be an apoplastic effector because its nuclear localization in the plant is necessary for cell death induction. Knockout of VdRTX1 significantly enhanced V. dahliae virulence on tobacco while V. dahliae employs the known suppressor VdCBM1 to escape the immunity induced by VdRTX1. VdRTX1 homologs are widely distributed in fungi but transient expression of 24 homologs from other fungi did not yield cell death induction, suggesting that this function is specific to the VdRTX1 in Vdahliae. Expression of site‐directed mutants of VdRTX1 in N. benthamiana leaves revealed conserved ligand‐binding sites that are important for VdRTX1 function in inducing cell death. Thus, VdRTX1 functions as a unique HR‐inducing effector in V. dahliae that contributes to the activation of plant immunity.  相似文献   
995.
996.
目的 分析烟曲霉的细胞外囊泡(extracellular vesicles, EVs)中的重要成分,以进一步明确曲霉致病机制。方法 通过离心法分离烟曲霉的囊泡,用电镜观察形态。采用马尔文纳米颗粒跟踪分析仪分析溶液中EVs的大小分布。通过质谱仪对囊泡内处理后的肽段进行分析。二级质谱数据使用Maxquant (v1.5.2.8)进行检索。检测RNA分布,通过数据库分析烟曲霉EVs中miRNA可能参与的一些通路。结果 电镜下烟曲霉的EVs可见明显的双层脂质结构。NTA发现烟曲霉分析的EVs大小主要集中在130 nm左右。EVs蛋白中不稳定蛋白为9种(15%),其余为稳定蛋白,而等电点(isoelectric point, PI)>7的为6种蛋白。EVs中大部分是胞浆蛋白,其余比较多的是细胞外分泌蛋白,但仍有25%的蛋白不能定位。通过跨膜蛋白预测(transmembrane prediction, TMPred)和糖基磷脂酰肌醇(glycosylphosphatidylinositol, GPI)预测,有5种蛋白存在于双层脂质膜上的蛋白。检测到RNA中rRNA和tRNA分别占59.7%和...  相似文献   
997.
Depression is a serious public-health issue. Recent reports have suggested higher susceptibility to viral infections in depressive patients. However, how depression affects antiviral innate immune signaling remains unknown. Here, we revealed a reduction in expression of Abelson helper integration site 1 (AHI1) in the peripheral blood mononuclear cells (PBMCs) and macrophages from the patients with major depressive disorder (MDD), which leads to attenuated antiviral immune response. We found that depression-related arginine vasopressin (AVP) induces reduction of AHI1 in macrophages. Further studies demonstrated that AHI1 is a critical stabilizer of basal type-I-interferon (IFN-I) signaling. Mechanistically, AHI1 recruits OTUD1 to deubiquitinate and stabilize Tyk2, while AHI1 reduction downregulates Tyk2 and IFN-I signaling activity in macrophages from both MDD patients and depression model mice. Interestingly, we identified a clinical analgesic meptazinol that effectively stimulates AHI1 expression, thus enhancing IFN-I antiviral defense in depression model mice. Our study promotes the understanding of the signaling mechanisms of depression-mediated antiviral immune dysfunction, and reveals meptazinol as an enhancer of antiviral innate immunity in depressive patients.Subject terms: Innate immunity, Ubiquitylation, Cell signalling  相似文献   
998.
BackgroundThe prevalence of Strongyloides stercoralis infection is estimated to be 30–100 million worldwide, although this an underestimate. Most cases remain undiagnosed due to the asymptomatic nature of the infection. We wanted to estimate the seroprevalence of S. stercoralis infection in a South Indian adult population.MethodsTo this end, we performed community-based screening of 2351 individuals (aged 18–65) in Kanchipuram District of Tamil Nadu between 2013 and 2020. Serological testing for S. stercoralis was performed using the NIE ELISA.ResultsOur data shows a seroprevalence of 33% (768/2351) for S. stercoralis infection which had a higher prevalence among males 36% (386/1069) than among females 29.8% (382/1282). Adults aged ≥55 (aOR = 1.65, 95% CI: 1.25–2.18) showed higher adjusted odds of association compared with other age groups. Eosinophil levels (39%) (aOR = 1.43, 95% CI: 1.19–1.74) and hemoglobin levels (24%) (aOR = 1.25, 95% CI: 1.11–1.53) were significantly associated with S. stercoralis infection. In contrast, low BMI (aOR = 1.15, 95% CI: 0.82–1.61) or the presence of diabetes mellitus (OR = 1.18, 95% CI: 0.83–1.69) was not associated with S. stercoralis seropositivity.ConclusionsOur study provides evidence for a very high baseline prevalence of S. stercoralis infection in South Indian communities and this information could provide realistic and concrete planning of control measures.  相似文献   
999.
In this Perspective, Fiona Bragg and Zhengming Chen discuss the burden of diabetes in the Chinese Population.

The worldwide epidemic of diabetes continues to grow [1]. In China, the rise in prevalence has been notably rapid; about 12% of the adult population has diabetes [2], accounting for almost one quarter of cases worldwide [1] and representing a 10-fold increase over the last 3 to 4 decades. It is appropriate, therefore, that diabetes—both prevention and management—is a major focus of current health policy initiatives in China [3,4], and their success depends on reliable quantification of the burden of diabetes. Commonly used measures such as prevalence and incidence fail to capture excess mortality risks or differences in life expectancy in diabetes [5]. Moreover, they may be less easily interpreted by policy makers and affected individuals. Estimates of lifetime risks and life years spent living with diabetes in an accompanying study by Luk and colleagues provide a valuable new perspective on the burden of diabetes in the Chinese population [6].The study used Hong Kong territory-wide electronic health records data for 2.6 million adults. Using a Markov chain model and Monte-Carlo simulations, Luk and colleagues estimated age- and sex-specific lifetime risks of diabetes (incorporating both clinically diagnosed and undiagnosed diabetes) and remaining life years spent with diabetes. Their findings showed a lifetime risk of 65.9% and 12.7 years of life living with diabetes for an average 20-year old with normoglycaemia. For an average 20-year old with prediabetes the corresponding estimates were 88.0% and 32.5 years, respectively. In other words, 6 out of 10 20-year olds with normoglycaemia and 9 out of 10 with prediabetes would be expected to develop diabetes in their lifetime. The estimated lifetime risks declined with increasing age and were higher among women than men at all ages, likely reflecting women’s higher life expectancy.These estimated lifetime risks are striking and concerning. Moreover, they are notably higher than western population estimates [710], including those considering both diagnosed and undiagnosed diabetes [9,10]. An Australian study estimated that 38% of 25-year olds would develop diabetes in their lifetime [10]. Another study in the Netherlands reported 31.3% and 74.0% probabilities of developing diabetes in the remaining lifetime for individuals aged 45 years without diabetes and with prediabetes, respectively [9]. Diabetes incidence and overall mortality influence population lifetime risks. Differences in the glycaemic indicators used to identify undiagnosed diabetes may have contributed to differences between studies in diabetes incidence. In the study by Luk and colleagues, a combination of fasting plasma glucose (FPG), HbA1c levels and oral glucose tolerance testing (OGTT) was used, while in the Australian [10] and the Netherlands [9] studies, they used FPG/OGTT and mainly FPG, respectively. However, it is unlikely these differences would fully account for the large disparities seen in lifetime risk. Similarly, differences between life expectancy in Hong Kong (84.8 years), Australia (83.4 years), and the Netherlands (82.2 years) are too small to explain the differences. Interestingly, the high lifetime risks observed in Hong Kong were more comparable to those in the Indian population, estimated at 55.5% and 64.6%, respectively, among 20-year-old men and women [11]. The typical type 2 diabetes (T2D) phenotype in these Asian populations may partly explain their higher estimated lifetime risks. More specifically, T2D in both Chinese and Indian populations is characterised by onset among younger and less adipose individuals than typically observed in western populations, exacerbated by rapid urbanisation and associated unhealthy lifestyles [12].However, aspects of Luk and colleagues’ study design may have overestimated lifetime diabetes risks. Chief among these is the data source used and associated selection bias. The Hong Kong Diabetes Surveillance Database includes only individuals who have ever had a plasma glucose or HbA1c measurement undertaken in a local health authority facility. Since measurement of glycaemic indicators is more likely among individuals at greater current or future risk of dysglycaemic states, this will have inflated estimates of lifetime risk and life years spent with diabetes. Although replication was undertaken by the study authors to address this bias in the smaller China Health and Retirement Longitudinal Survey (CHARLS) cohort, it does not fully allay these concerns, with modestly lower estimated lifetime diabetes risks in the CHARLS cohort, even after accounting for its higher mortality. A further limitation is their consideration of transition to dysglycaemic states as irreversible. Although data on long-term transition between glycaemic states are lacking, reversion from prediabetes (and less commonly diabetes) to normoglycaemia is well recognised, e.g., through lifestyle interventions [13].Large-scale population-based cohort studies could valuably address many of the limitations described [14]. Furthermore, lifetime risks are, by definition, population-based and represent the risk of an average person in the population, limiting their value for communicating long-term disease risks to specific individuals. However, the extensive phenotyping (e.g., adiposity) characteristic of many large contemporary cohorts [14] would facilitate incorporation of risk factors into lifetime risk estimates, enhancing their relevance to individuals. Previous studies have found greater lifetime risks of diabetes associated with adiposity [9,11], and this approach could be extended to incorporate other established, as well as more novel (e.g., genetic), risk factors. This is arguably of particular relevance to later-onset chronic conditions, such as T2D, in which changes in risk factors during middle age can influence lifetime risks. A valuable extension of Luk and colleagues’ study will be estimation of risk factor specific lifetime diabetes risks for the Chinese population.Importantly, the limitations described do not detract from the enormity and importance of the challenge diabetes poses for China, including Hong Kong, and the estimates presented by Luk and colleagues provide valuable impetus for action. The disease burden insights can inform treatment programmes and enhance understanding of current and future impacts of diabetes and associated complications on the healthcare system. Moreover, T2D is preventable, and arguably, the greatest value of these estimated lifetime risks is in highlighting the need for, and informing the planning and provision of, diabetes primary prevention programmes. This includes identification of high-risk individuals, such as those with prediabetes, who are most likely to benefit from prevention interventions. However, the magnitude of the estimated lifetime diabetes risks, including among the large proportion of the population in a normoglycaemic state, additionally demonstrates the need for population-level prevention approaches, including environmental, structural, and fiscal strategies. Without such actions, the individual and societal consequences of diabetes for present and future generations in Hong Kong, as well as mainland China, will be immense.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号