首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19149篇
  免费   1409篇
  国内免费   1515篇
  22073篇
  2024年   49篇
  2023年   329篇
  2022年   658篇
  2021年   1089篇
  2020年   670篇
  2019年   906篇
  2018年   802篇
  2017年   558篇
  2016年   876篇
  2015年   1153篇
  2014年   1456篇
  2013年   1521篇
  2012年   1808篇
  2011年   1565篇
  2010年   989篇
  2009年   847篇
  2008年   943篇
  2007年   809篇
  2006年   658篇
  2005年   578篇
  2004年   485篇
  2003年   436篇
  2002年   387篇
  2001年   285篇
  2000年   290篇
  1999年   303篇
  1998年   195篇
  1997年   199篇
  1996年   188篇
  1995年   151篇
  1994年   136篇
  1993年   96篇
  1992年   140篇
  1991年   114篇
  1990年   100篇
  1989年   79篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
通过分析青天葵及其常见混伪品的ITS2序列,建立青天葵新型真伪鉴别方法.采用植物基因组DNA提取试剂盒提取青天葵及其混伪品的叶片DNA,一对通用引物PCR扩增ITS2基因片段并直接双向测序.采用DNAMAN、ClustalX软件拼接比对序列,MEGA4.0软件构建NJ树,Schultz等建立的数据库和网站预测ITS2序列的二级结构.结果显示,获得的12条ITS2序列的长度范围为203-242 bp,GC含量范围为53.1%-71.8%.所有样品ITS2序列比对后的长度为249 bp,其中存在226个变异位点.青天葵种间K2P遗传距离(1.125)远大于种内K2P遗传距离(0.004).基于ITS2的序列的NJ树和二级结构均能直观地区分青天葵及其混伪品.  相似文献   
992.
The biogenesis and assembly of photosynthetic multisubunit protein complexes is assisted by a series of nucleus-encoded auxiliary protein factors. In this study, we characterize the dac mutant of Arabidopsis (Arabidopsis thaliana), which shows a severe defect in the accumulation of the cytochrome b6/f complex, and provide evidence suggesting that the efficiency of cytochrome b6/f complex assembly is affected in the mutant. DAC is a thylakoid membrane protein with two predicted transmembrane domains that is conserved from cyanobacteria to vascular plants. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation analyses revealed a specific interaction between DAC and PetD, a subunit of the cytochrome b6/f complex. However, DAC was found not to be an intrinsic component of the cytochrome b6/f complex. In vivo chloroplast protein labeling experiments showed that the labeling rates of the PetD and cytochrome f proteins were greatly reduced, whereas that of the cytochrome b6 protein remained normal in the dac mutant. DAC appears to be a novel factor involved in the assembly/stabilization of the cytochrome b6/f complex, possibly through interaction with the PetD protein.The cytochrome b6/f (Cyt b6/f) complex is a multisubunit complex that resides in the thylakoid membrane and functions in linear and cyclic electron transport. In the linear process, the complex receives electrons from PSII and transfers them to PSI, a process that is accompanied by the generation of a proton gradient, which is essential for ATP synthesis (Mitchell, 1961; Saraste, 1999). The native form of this complex is present as a dimer with a mass of 310 kD that can be converted into a 140-kD monomer with increasing detergent concentrations (Huang et al., 1994; Breyton et al., 1997; Mosser et al., 1997; Baniulis et al., 2009). In higher plants, the Cyt b6/f monomer contains at least eight subunits: Cyt f, Cyt b6, PetC, PetD, PetM, PetL, PetG, and PetN (Wollman, 2004). PetC and PetM are encoded by nuclear genes, whereas the others are encoded by plastid genes. It has been shown that PetG and PetN are necessary for complex stability in tobacco (Nicotiana tabacum; Schwenkert et al., 2007). By contrast, PetL is not required for the accumulation of other subunits of the Cyt b6/f complex, even though it is involved in the stability and formation of the functional dimer (Bendall et al., 1986; Schwenkert et al., 2007). Inactivation of PetC in Arabidopsis (Arabidopsis thaliana) resulted in significantly reduced amounts of Cyt b6/f subunits and completely blocked linear electron transport, indicating that PetC participates in the formation of the functionally assembled Cyt b6/f complex (Maiwald et al., 2003). In Synechocystis sp. PCC 6803, the PetM subunit has no essential role in Cyt b6/f complex electron transfer or accumulation; however, the absence of this subunit apparently affects the levels of other protein complexes involved in energy transduction (Schneider et al., 2001). In addition to the other proteins, FNR was identified as a subunit of the Cyt b6/f complex isolated from spinach (Spinacia oleracea) thylakoid membranes (Zhang et al., 2001).Previous research has revealed how the Cyt b6/f complex assembles into a functional dimer (Bendall et al., 1986; Lemaire et al., 1986; Kuras and Wollman, 1994). In the Cyt b6/f complex, Cyt b6 and PetD form a mildly protease-resistant subcomplex that serves as a template for the assembly of Cyt f and PetG, producing a protease-resistant cytochrome moiety (Wollman, 2004). The PetC and PetL proteins then participate in the assembly of the functional dimer (Schwenkert et al., 2007). PetD becomes more unstable in the absence of Cyt b6, and the synthesis of Cyt f is greatly reduced when either Cyt b6 or PetD is inactivated, indicating that both Cyt b6 and PetD are prerequisite for the synthesis of Cyt f (Kuras and Wollman, 1994). The reduced synthesis of Cyt f can be explained by the so-called CES (for controlled by epistasy of synthesis) mechanism. It is suggested that, in this mechanism, the synthesis rate of some chloroplast-encoded subunits of photosynthetic protein complexes is regulated by the availability of their assembly partners from the same complexes (Choquet et al., 2001). The mechanism of CES for Cyt f has been studied in detail in Chlamydomonas reinhardtii (Choquet et al., 1998; Choquet and Vallon, 2000). In it, the unassembled Cyt f inhibits its own translation through a negative feedback mechanism, and MCA1 and TCA1 have been demonstrated to be involved in the regulation of Cyt f synthesis (Boulouis et al., 2011).Many studies have focused on understanding the conversion of apocytochrome to holocytochrome via the covalent binding of heme in Cyt f and Cyt b6 during the assembly of Cyt b6/f through the CCS and CCB pathways (Nakamoto et al., 2000; Wollman, 2004; de Vitry, 2011). The CCS pathway was originally discovered in the green alga C. reinhardtii through genetic studies of ccs mutants (for cytochrome c synthesis) that display a specific defect in membrane-bound Cyt f and soluble Cyt c6, two thylakoid lumen-resident c-type cytochromes functioning in photosynthesis (Xie and Merchant, 1998). In the CCS pathway, six loci that include plastid ccsA and nuclear CCS1 to CCS5 have been found in C. reinhardtii (Xie and Merchant, 1998). In these mutants, the apocytochrome is normally synthesized, targeted, and processed, but heme attachment is perturbed. The CCB pathway is involved in the covalent attachment of heme c(i) to Cyt b6 on the stromal side of the thylakoid membranes (Kuras et al., 2007). The ccb mutants show defects in the accumulation of subunits of the Cyt b6/f complex and covalent binding of heme to Cyt b6 (Lyska et al., 2007; Lezhneva et al., 2008). However, heme binding is not a prerequisite for the assembly of Cyt b6 into the Cyt b6/f complex, although the fully formed Cyt b6/f showed an increased sensitivity to protease (Saint-Marcoux et al., 2009).The assembly of the Cyt b6/f complex is a multistep process, and current studies have shown that the covalent binding of heme to Cyt f and Cyt b6 is highly regulated. Thus, it is reasonable to speculate that, similar to the other photosynthetic protein complexes (Mulo et al., 2008; Nixon et al., 2010; Rochaix, 2011), the assembly of the Cyt b6/f complex is also assisted by many nucleus-encoded factors. In this study, we characterized an Arabidopsis protein, DAC (for defective accumulation of Cyt b6/f complex), that seems to be involved in the assembly of the Cyt b6/f complex. In addition, we provide evidence that DAC interacts directly with PetD before it assembles within the Cyt b6/f complex.  相似文献   
993.
994.
考察了不同渗透胁迫(0、10、20、30和40 g/L NaCl)对裂殖壶菌HX-308发酵产DHA及脂肪酸构成的影响。结果表明:20 g/L NaCl最有利于裂殖壶菌生长和DHA积累,生物量、总脂肪酸含量、DHA产量及DHA占生物量的比值分别为73 g/L、10.7 g/L、5.0 g/L和68 mg/g,并且DHA在总脂肪酸中所占百分比最高,为45.2%。此外,在低渗透压(10 g/L NaCl)条件下,添加40 mmol/L甘氨酸甜菜碱,DHA产量与未添加相比提高了28.21%;在高渗透压(40 g/L NaCl)条件下添加40 mmol/L海藻糖,DHA产量提高了46.84%;表明添加适量的外源相容性溶质能有效地促进裂殖壶菌积累DHA。  相似文献   
995.
Fei Zhang  Zhen He 《Process Biochemistry》2012,47(12):2146-2151
This study presented a dual-cathode microbial fuel cell (MFC) that was designed to accomplish nitrification in its outer cathode and denitrification in the inner cathode. The MFC was continuously operated for more than 150 days and achieved organic removal of 85–99% in the anode, depending on the initial organic loading rates. More than 96% of the ammonium was removed, while the total nitrogen removal was between 66.7 and 89.6%, largely affected by the remaining nitrate in the effluent of the inner cathode. The coulombic efficiency suggested that the nitrate was primarily removed by bioelectrochemcial denitrification in the inner cathode, especially at the low nitrogen loading rates. However, a higher nitrogen loading rate encouraged nitrate migration through the anion exchange membrane, thereby being removed by conventional denitrification. The preliminary energy analysis suggested that the energy production in the dual-cathode MFC could potentially support its pumping system. To achieve an energy-neutral system, aeration must be omitted in the future design and passive oxygen supply should be considered with a proper design of the outer cathode. Those results demonstrated the feasibility of using a tubular dual-cathode MFC to remove both organics and nitrogen while producing electricity.  相似文献   
996.
用反向间接血凝试验快速检测轮状病毒抗原和抗体   总被引:2,自引:0,他引:2  
  相似文献   
997.
以棉花栽培种中棉作母本,野生种戴维逊氏棉作父本进行杂交试验,并用中棉自交作对照,比较研究了杂交情况下花粉粒的萌发、花粉管的生长、受精作用及胚和胚乳的发育过程,得到以下结果:(1)中棉×戴维逊氏棉花粉粒的萌发及花粉管在异己花柱中的生长基本正常,有花粉管胚珠的频率约20%,为中棉自交的1/4左右;(2)在杂交情况下,有花粉管进入的胚珠基本上能实现受精;(3)杂种胚乳在授粉后7天发育异常,11天开始解体,16天才有部分胚珠的胚乳开始形成细胞壁;(4)杂种胚不分化或畸形分化,在授粉后11—22天坏死。  相似文献   
998.
Sphingosine 1-phosphate (S1P) is a biologically active lipid. In vitro, S1P tightens the endothelial barrier, as assessed by a rapid increase in electrical resistance and a decrease in solute permeability. We hypothesized that this activity of S1P would also occur in vivo. Hydraulic conductivity (Lp), an assessment of endothelial barrier function, was measured in individually perfused venules in rat mesenteries. S1P (1 microM) decreased basal Lp by 63% when basal Lp was between 3.6 and 4.1 x 10(-7) cm x s(-1) x cmH2O(-1) but showed no effect when basal Lp was below 2 x 10(-7) cm x s(-1) x cmH2O(-1). Under either condition, S1P blocked the sixfold increase in Lp induced by platelet-activating factor (PAF, 10 nM). Perfusion of venules with pertussis toxin (0.1 microg/ml), a specific inhibitor of the inhibitory G protein, Gi, for 3 h did not affect basal Lp or the increased Lp induced by PAF. Pertussis toxin, however, significantly attenuated the inhibitory action of S1P on the PAF-induced increase in Lp, indicating the involvement of the Gi protein. Measurement of endothelial cytoplasmic Ca2+ concentration ([Ca2+]i) in venules loaded with fura-2 AM showed that S1P alone transiently increased basal endothelial [Ca2+]i (from 89 nM to 193 nM) but had no effect on the magnitude and time course of the PAF-induced increase in endothelial [Ca2+]i. These results indicate that S1P functions in vivo to prevent the PAF-induced increase in microvessel permeability. The inhibitory action of S1P involves the pertussis toxin-sensitive Gi protein and is not mediated by prevention of the PAF-induced increase in endothelial [Ca2+]i.  相似文献   
999.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号