首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13894篇
  免费   1077篇
  国内免费   1302篇
  16273篇
  2024年   19篇
  2023年   155篇
  2022年   343篇
  2021年   561篇
  2020年   416篇
  2019年   494篇
  2018年   478篇
  2017年   372篇
  2016年   531篇
  2015年   747篇
  2014年   947篇
  2013年   1017篇
  2012年   1225篇
  2011年   1187篇
  2010年   728篇
  2009年   643篇
  2008年   747篇
  2007年   701篇
  2006年   635篇
  2005年   553篇
  2004年   475篇
  2003年   476篇
  2002年   393篇
  2001年   290篇
  2000年   280篇
  1999年   235篇
  1998年   168篇
  1997年   145篇
  1996年   142篇
  1995年   116篇
  1994年   108篇
  1993年   94篇
  1992年   147篇
  1991年   113篇
  1990年   79篇
  1989年   78篇
  1988年   72篇
  1987年   61篇
  1986年   46篇
  1985年   55篇
  1984年   38篇
  1983年   26篇
  1982年   20篇
  1981年   11篇
  1979年   11篇
  1978年   10篇
  1977年   9篇
  1971年   11篇
  1970年   9篇
  1966年   8篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
931.
The Beclin1–VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L‐linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L‐ but not UVRAG‐linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise‐induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L‐associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro‐autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L‐linked VPS34 complex upon glucose starvation.  相似文献   
932.
Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis.  相似文献   
933.
Cucumber mosaic virus (CMV) 2b suppresses RNA silencing primarily through the binding of double‐stranded RNA (dsRNA) of varying sizes. However, the biologically active form of 2b remains elusive. Here, we demonstrate that the single and double alanine substitution mutants in the N‐terminal 15th leucine and 18th methionine of CMV 2b exhibit drastically attenuated virulence in wild‐type plants, but are efficiently rescued in mutant plants defective in RNA‐dependent RNA polymerase 6 (RDR6) and Dicer‐like 4 (DCL4). Moreover, the transgenic plants of 2b, but not 2blm (L15A/M18A), rescue the high infectivity of CMV‐Δ2b through the suppression of antiviral silencing. L15A, M18A or both weaken 2b suppressor activity on local and systemic transgene silencing. In contrast with the high affinity of 2b to short and long dsRNAs, 2blm is significantly compromised in 21‐bp duplex small interfering RNA (siRNA) binding ability, but maintains a strong affinity for long dsRNAs. In cross‐linking assays, 2b can form dimers, tetramers and oligomers after treatment with glutaraldehyde, whereas 2blm only forms dimers, rather than tetramers and oligomers, in vitro. Together, these findings suggest that L15 and M18 of CMV 2b are required for high affinity to ds‐siRNAs and oligomerization activity, which are essential for the suppression activity of 2b on antiviral silencing.  相似文献   
934.
Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle‐specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle‐specific promoter could be used to increase seed size, leading to grain yield improvement in rice.  相似文献   
935.
Yang XL  Song HL  Chen M  Cheng B 《Bioresource technology》2011,102(20):9490-9496
The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling.  相似文献   
936.
模拟风雨对麦长管蚜自然种群发展的干扰作用   总被引:1,自引:0,他引:1  
王冰  李克斌  尹姣  曹雅忠 《昆虫知识》2011,48(6):1646-1654
麦长管蚜Macrosiphum avenae(Fabricius)是我国小麦生产上的重大害虫,给小麦生产造成严重的威胁。本研究采用人工模拟风雨气象因子的方法,研究了吹风和喷水对麦长管蚜种群数量的干扰作用,解析了麦长管蚜在种群不同发展阶段受模拟风雨干扰后种群变化的特征,明确了麦长管蚜受模拟风雨作用影响其种群生长的关键时期。结果表明,在小麦田进行模拟风雨试验,处理强度越大,防治效果越好;有目标的对靶喷施处理的防治效果明显高于非目标喷施处理;确定人工喷水或吹风处理的最佳时期为小麦灌浆初期,即在该阶段进行一次喷水处理,可以获得最佳的防治效果和保产作用。  相似文献   
937.

Background

Cytoplasmic filamentous rods and rings (RR) structures were identified using human autoantibodies as probes. In the present study, the formation of these conserved structures in mammalian cells and functions linked to these structures were examined.

Methodology/Principal Findings

Distinct cytoplasmic rods (∼3–10 µm in length) and rings (∼2–5 µm in diameter) in HEp-2 cells were initially observed in immunofluorescence using human autoantibodies. Co-localization studies revealed that, although RR had filament-like features, they were not enriched in actin, tubulin, or vimentin, and not associated with centrosomes or other known cytoplasmic structures. Further independent studies revealed that two key enzymes in the nucleotide synthetic pathway cytidine triphosphate synthase 1 (CTPS1) and inosine monophosphate dehydrogenase 2 (IMPDH2) were highly enriched in RR. CTPS1 enzyme inhibitors 6-diazo-5-oxo-L-norleucine and Acivicin as well as the IMPDH2 inhibitor Ribavirin exhibited dose-dependent induction of RR in >95% of cells in all cancer cell lines tested as well as mouse primary cells. RR formation by lower concentration of Ribavirin was enhanced in IMPDH2-knockdown HeLa cells whereas it was inhibited in GFP-IMPDH2 overexpressed HeLa cells. Interestingly, RR were detected readily in untreated mouse embryonic stem cells (>95%); upon retinoic acid differentiation, RR disassembled in these cells but reformed when treated with Acivicin.

Conclusions/Significance

RR formation represented response to disturbances in the CTP or GTP synthetic pathways in cancer cell lines and mouse primary cells and RR are the convergence physical structures in these pathways. The availability of specific markers for these conserved structures and the ability to induce formation in vitro will allow further investigations in structure and function of RR in many biological systems in health and diseases.  相似文献   
938.
Xie Y  Zhang Z  Niu L  Wang Q  Wang C  Lan J  Deng J  Fu Y  Nie H  Yan N  Yang D  Hao G  Gu X  Wang S  Peng X  Yang G 《PloS one》2011,6(10):e27066

Background

Baylisascaris procyonis (Nematoda: Ascaridida), an intestinal nematode of raccoons, is emerging as an important helminthic zoonosis due to serious or fatal larval migrans in animals and humans. Despite its significant veterinary and public health impact, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. Mitochondrial (mt) genomes can provide a foundation for investigations in these areas and assist in the diagnosis and control of B. procyonis. In this study, the first complete mt genome sequence of B. procyonis was determined using a polymerase chain reaction (PCR)-based primer-walking strategy.

Methodology/Principal Findings

The circular mt genome (14781 bp) of B. procyonis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes congruent with other chromadorean nematodes. Interestingly, the B. procyonis mtDNA featured an extremely long AT-rich region (1375 bp) and a high number of intergenic spacers (17), making it unique compared with other secernentean nematodes characterized to date. Additionally, the entire genome displayed notable levels of AT skew and GC skew. Based on pairwise comparisons and sliding window analysis of mt genes among the available 11 Ascaridida mtDNAs, new primer pairs were designed to amplify specific short fragments of the genes cytb (548 bp fragment) and rrnL (200 bp fragment) in the B. procyonis mtDNA, and tested as possible alternatives to existing mt molecular beacons for Ascaridida. Finally, phylogenetic analysis of mtDNAs provided novel estimates of the interrelationships of Baylisasaris and Ascaridida.

Conclusions/Significance

The complete mt genome sequence of B. procyonis sequenced here should contribute to molecular diagnostic methods, epidemiological investigations and ecological studies of B. procyonis and other related ascaridoids. The information will be important in refining the phylogenetic relationships within the order Ascaridida and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of parasitic nematodes of socio-economic importance.  相似文献   
939.
IRF7 is known as the master regulator in virus-triggered induction of type I IFNs (IFN-I). In this study, we identify GBP4 virus-induced protein interacting with IRF7 as a negative regulator for IFN-I response. Overexpression of GBP4 inhibits virus-triggered activation of IRF7-dependent signaling, but has no effect on NF-κB signaling, whereas the knockdown of GBP4 has opposite effects. Furthermore, the supernatant from Sendai virus-infected cells in which GBP4 have been silenced inhibits the replication of vesicular stomatitis virus more efficiently. Competitive coimmunoprecipitation experiments indicate that overexpression of GBP4 disrupts the interactions between TRAF6 and IRF7, resulting in impaired TRAF6-mediated IRF7 ubiquitination. Our results suggest that GBP4 is a negative regulator of virus-triggered IFN-I production, and it is identified as a novel protein targeting IRF7 and inhibiting its function.  相似文献   
940.
A novel ligand‐assisted assembly approach is demonstrated for the synthesis of thermally stable and large‐pore ordered mesoporous titanium dioxide with a highly crystalline framework by using diblock copolymer poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) as a template and titanium isopropoxide (TIPO) as a precursor. Small‐angle X‐ray scattering, X‐ray diffraction (XRD), transmission electron microscopy (TEM), high‐resolution scanning electron microscopy, and N2‐sorption measurements indicate that the obtained TiO2 materials possess an ordered primary cubic mesostructure with large, uniform pore diameters of about 16.0 nm, and high Brunauer–Emmett–Teller surface areas of ~112 m2 g?1, as well as high thermal stability (~700 °C). High resolution TEM and wide‐angle XRD measurements clearly illustrate the high crystallinity of the mesoporous titania with an anatase structure in the pore walls. It is worth mentioning that, in this process, in addition to tetrahydrofuran as a solvent, acetylacetone was employed as a coordination agent to avoid rapid hydrolysis of the titanium precursor. Additionally, stepped evaporation and heating processes were adopted to control the condensation rate and facilitate the assembly of the ordered mesostructure, and ensure the formation of fully polycrystalline anatase titania frameworks without collapse of the mesostructure. By employing the obtained mesoporous and crystallized TiO2 as the photoanode in a dye‐sensitized solar cell, a high power‐conversion efficiency (5.45%) can be achieved in combination with the N719 dye, which shows that this mesoprous titania is a great potential candidate as a catalyst support for photonic‐conversion applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号