首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   9篇
  106篇
  2022年   1篇
  2020年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1974年   4篇
  1973年   1篇
  1968年   5篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
  1924年   1篇
排序方式: 共有106条查询结果,搜索用时 8 毫秒
21.
Breast cancer in Poland syndrome   总被引:3,自引:0,他引:3  
A 33-year-old African-American woman with a severe manifestation of Poland syndrome developed breast cancer in the ipsilateral breast. She had a severely hypoplastic upper extremity, including symbrachydactyly, and a hypoplastic forearm and upper arm. In addition, she lacked the sternal origin of the pectoralis muscle. She had a very small nipple-areola complex and no axillary hair. This is the first case report of breast cancer developing in the ipsilateral breast of a patient with Poland syndrome.  相似文献   
22.
23.
24.

Background  

The influence of sperm competition upon sperm size has been a controversial issue during the last 20 years which remains unresolved for mammals. The hypothesis that, when ejaculates compete with rival males, an increase in sperm size would make sperm more competitive because it would increase sperm swimming speed, has generated contradictory results from both theoretical and empirical studies. In addition, the debate has extended to which sperm components should increase in size: the midpiece to accommodate more mitochondria and produce more energy to fuel motility, or the principal piece to generate greater propulsion forces.  相似文献   
25.
Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using 31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.  相似文献   
26.
Sicarius and Homalonychus are unrelated, desert-dwelling spiders that independently evolved the ability to cover themselves in fine sand particles, making them cryptic against their background. Observations that particles associate with these spiders' setae inspired us to investigate the role of setal microstructure in particle capture and retention. Here we report that Sicarius and Homalonychus convergently evolved numerous high aspect ratio, flexible fibres that we call 'hairlettes' protruding from the setal shaft. We demonstrate that particles attach more densely to regions of Homalonychus with hairlettes than to other regions of the same animal where hairlettes are absent, and document close contact of hairlettes to sand particles that persists after applying force. Mathematical models further suggest that adhesion of hairlettes to sand particles is a sufficient mechanism of particle capture and retention. Together, these data provide the first evidence that hairlettes facilitate sand retention through intermolecular adhesion to particles. Their independent evolutionary origins in Sicarius and Homalonychus suggest that the unique setal structure is adaptive and represents a general biomechanical mechanism for sand capture to cuticle. This discovery has implications for the design of inventions inspired by this system, from camouflage to the management of granular systems.  相似文献   
27.
J S Binford  Jr  W H Palm 《Biophysical journal》1994,66(6):2024-2028
Three surfactants (chlorpromazine hydrochloride, thioridazine hydrochloride, and sodium deoxycholate) are found to absorb just as strongly into the protein-containing membranes of erythrocytes as into the phospholipid bilayers of synthetic vesicles. In the concentration region where hemolysis occurs and the Langmuir adsorption isotherm is no longer valid, one may use a phase partition model in which the erythrocyte membrane is one of the phases. The partition coefficients, expressed as the ratio of mole fraction surfactant in the membrane lipid phase to concentration of surfactant in the aqueous phase, have been calculated at the point of saturation in the erythrocyte membrane. These values are Ky = 430 M-1 (chlorpromazine, pH 5.9), 550 M-1 (deoxycholate, pH 7.6), and 640 M-1 (thioridazine, pH 5.9), in isotonic buffer at 27 degrees C. Corresponding values for synthetic vesicles made from dimyristoylphosphatidylcholine are Kx = 230 M-1 (chlorpromazine, 0.12 M buffer/KCl pH 5.9), 440 M-1 (deoxycholate, 0.20 M buffer/NaCl pH 8.0) and 510 M-1 (thioridazine, 0.12 M buffer/KCl pH 5.9), at 27 degrees C. It appears that the surfactants become an integral part of the bilayer in both vesicles and natural membranes and that the absorption is not of a peripheral nature. There is no evidence that the presence of proteins in the natural membrane inhibits the absorption of these surfactants in any way.  相似文献   
28.
We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides.  相似文献   
29.
Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.  相似文献   
30.
The venoms of Loxosceles spiders cause severe dermonecrotic lesions in human tissues. The venom component sphingomyelinase D (SMD) is a contributor to lesion formation and is unknown elsewhere in the animal kingdom. This study reports comparative analyses of SMD activity and venom composition of select Loxosceles species and representatives of closely related Haplogyne genera. The goal was to identify the phylogenetic group of spiders with SMD and infer the timing of evolutionary origin of this toxin. We also preliminarily characterized variation in molecular masses of venom components in the size range of SMD. SMD activity was detected in all (10) Loxosceles species sampled and two species representing their sister taxon, Sicarius, but not in any other venoms or tissues surveyed. Mass spectrometry analyses indicated that all Loxosceles and Sicarius species surveyed had multiple (at least four to six) molecules in the size range corresponding to known SMD proteins (31-35 kDa), whereas other Haplogynes analyzed had no molecules in this mass range in their venom. This suggests SMD originated in the ancestors of the Loxosceles/Sicarius lineage. These groups of proteins varied in molecular mass across species with North American Loxosceles having 31-32 kDa, African Loxosceles having 32-33.5 kDa and Sicarius having 32-33 kDa molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号