首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1640篇
  免费   169篇
  2023年   7篇
  2022年   23篇
  2021年   30篇
  2020年   21篇
  2019年   22篇
  2018年   33篇
  2017年   25篇
  2016年   45篇
  2015年   78篇
  2014年   80篇
  2013年   110篇
  2012年   133篇
  2011年   122篇
  2010年   71篇
  2009年   85篇
  2008年   116篇
  2007年   93篇
  2006年   115篇
  2005年   95篇
  2004年   96篇
  2003年   114篇
  2002年   87篇
  2001年   19篇
  2000年   16篇
  1999年   27篇
  1998年   17篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1972年   2篇
  1971年   7篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1963年   2篇
  1962年   2篇
  1959年   2篇
排序方式: 共有1809条查询结果,搜索用时 15 毫秒
971.
Poly(L-lysine)/hyaluronan (PLL/HA) films were chemically cross-linked with a water soluble carbodiimide (EDC) in combination with a N-hydroxysulfo-succinimide (NHS) to induce amide formation. Fourier transform infrared spectroscopy confirms the conversion of carboxylate and ammonium groups into amide bonds. Quartz crystal microbalance-dissipation reveals that the cross linking reaction is accompanied by a change in the viscoelastic properties of the films leading to more rigid films. After the cross-linking reaction, both positively and negatively ending films exhibit a negative zeta potential. It is shown by fluorescence recovery after photobleaching measured by confocal laser scanning microscopy that cross-linking dramatically reduces the diffusion of the PLL chains in the network. Cross linking also renders the films highly resistant to hyaluronidase, an enzyme that naturally degrades hyaluronan. Finally, the adhesion of chondrosarcoma cells on the films terminating either with PLL or HA is also investigated. Whereas the non cross-linked films are highly resistant to cell adhesion, the cells adhere and spread well on the cross-linked films.  相似文献   
972.
CP12 is an 8.5-kDa nuclear-encoded chloroplast protein, isolated from higher plants. It forms part of a core complex of two dimers of phosphoribulokinase (PRK), two tetramers of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and CP12. The role of CP12 in this complex assembly has not been determined. To address this question, we cloned a cDNA encoding the mature CP12 from the green alga Chlamydomonas reinhardtii and expressed it in Escherichia coli. Sequence alignments show that it is very similar to other CP12s, with four conserved cysteine residues forming two disulfide bridges in the oxidized CP12. On the basis of reconstitution assays and surface plasmon resonance binding studies, we show that oxidized, but not reduced, CP12 acts as a linker in the assembly of the complex, and we propose a model in which CP12 associates with GAPDH, causing its conformation to change. This GAPDH/CP12 complex binds PRK to form a half-complex (one unit). This unit probably dimerizes due partially to interactions between the enzymes of each unit. Reduced CP12 being unable to reconstitute the complex, we studied the structures of oxidized and reduced CP12 by NMR and circular dichroism to determine whether reduction induced structural transitions. Oxidized CP12 is mainly composed of alpha helix and coil segments, and is extremely flexible, while reduced CP12 is mainly unstructured. Remarkably, CP12 has similar physicochemical properties to those of "intrinsically unstructured proteins" that are also involved in regulating macromolecular complexes, or in their assembly. CP12s are thus one of the few protein families of intrinsically unstructured proteins specific to plants.  相似文献   
973.
OPA1 encodes a large GTPase related to dynamins, anchored to the mitochondrial cristae inner membrane, facing the intermembrane space. OPA1 haplo-insufficiency is responsible for the most common form of autosomal dominant optic atrophy (ADOA, MIM165500), a neuropathy resulting from degeneration of the retinal ganglion cells and optic nerve atrophy. Here we show that down-regulation of OPA1 in HeLa cells using specific small interfering RNA (siRNA) leads to fragmentation of the mitochondrial network concomitantly to the dissipation of the mitochondrial membrane potential and to a drastic disorganization of the cristae. These events are followed by cytochrome c release and caspase-dependent apoptotic nuclear events. Similarly, in NIH-OVCAR-3 cells, the OPA1 siRNA induces mitochondrial fragmentation and apoptosis, the latter being inhibited by Bcl2 overexpression. These results suggest that OPA1 is a major organizer of the mitochondrial inner membrane from which the maintenance of the cristae integrity depends. As loss of OPA1 commits cells to apoptosis without any other stimulus, we propose that OPA1 is involved in the cytochrome c sequestration and might be a target for mitochondrial apoptotic effectors. Our results also suggest that abnormal apoptosis is a possible pathophysiological process leading to the retinal ganglion cells degeneration in ADOA patients.  相似文献   
974.
The synthesis and pharmacological evaluation of new 3-(imidazol-4(5)-ylmethylene)-2,3-dihydrobenzo[b]furan-2-ones 8-10 and 3-(3,5-dimethylpyrrol-2-ylmethylene)-2,3-dihydrobenzo[b]furan-2-one 11, analogues of SU-5416, as potential inhibitors of angiogenesis, are reported. Compounds 8 and 11 were prepared by a Knoevenagel reaction starting from 2-hydroxyphenylacetic acid 2 and 4-formylimidazole 5 or 2-formyl-3,5-dimethylpyrrole 7, followed by acid-catalysed cyclodehydration. For compounds 9 and 10, an alternative method was used; it consisted in carrying out the Knoevenagel reaction with the 2,3-dihydrobenzo[b]furan-2-ones 3 and 4. The antiangiogenic activity of these compounds was evaluated in the three-dimensional in vitro rat aortic rings test at 1microM. At this concentration, compound 11 induced a decrease of angiogenesis comparable to that observed with SU-5416; the vascular density index at 1 microM of 11 and SU-5416 were 30 +/- 10 and 22 +/- 4% of control, respectively.  相似文献   
975.
Cell migration and other complex cellular processes involve a variety of signaling molecules and require the integration of multiple signals into a coherent cytoskeletal response. Two papers in the May issue of Molecular Cell now demonstrate that phosphorylation plays a critical role in WASP function as a regulator of Arp2/3-mediated actin polymerization.  相似文献   
976.
Binet MR  Poole RK 《FEBS letters》2000,471(1):67-70
Feeding bioassay results established that the soybean cysteine proteinase inhibitor N (soyacystatin N, scN) substantially inhibits growth and development of western corn rootworm (WCR), by attenuating digestive proteolysis [Zhao, Y. et al. (1996) Plant Physiol. 111, 1299-1306]. Recombinant scN was more inhibitory than the potent and broad specificity cysteine proteinase inhibitor E-64. WCR digestive proteolytic activity was separated by mildly denaturing SDS-PAGE into two fractions and in-gel assays confirmed that the proteinase activities of each were largely scN-sensitive. Since binding affinity to the target proteinase [Koiwa, H. et al. (1998) Plant J. 14, 371-380] governs the effectiveness of scN as a proteinase inhibitor and an insecticide, five peptides (28-33 kDa) were isolated from WCR gut extracts by scN affinity chromatographic separation. Analysis of the N-terminal sequence of these peptides revealed similarity to a cathepsin L-like cysteine proteinase (DvCAL1, Diabrotica virgifera virgifera cathepsin L) encoded by a WCR cDNA. Our results indicate that cathepsin L orthologs are pivotal digestive proteinases of WCR larvae, and are targets of plant defensive cystatins (phytocystatins), like scN.  相似文献   
977.
Ribosomal RNAs undergo several nucleotide modifications including methylation. We identify FtsJ, the first encoded protein of the ftsJ-hflB heat shock operon, as an Escherichia coli methyltransferase of the 23 S rRNA. The methylation reaction requires S-adenosylmethionine as donor of methyl groups, purified FtsJ or a S(150) supernatant from an FtsJ-producing strain, and ribosomes from an FtsJ-deficient strain. In vitro, FtsJ does not efficiently methylate ribosomes purified from a strain producing FtsJ, suggesting that these ribosomes are already methylated in vivo by FtsJ. FtsJ is active on ribosomes and on the 50 S ribosomal subunit, but is inactive on free rRNA, suggesting that its natural substrate is ribosomes or a pre-ribosomal ribonucleoprotein particle. We identified the methylated nucleotide as 2'-O-methyluridine 2552, by reverse phase high performance liquid chromatography analysis, boronate affinity chromatography, and hybridization-protection experiments. In view of its newly established function, FtsJ is renamed RrmJ and its encoding gene, rrmJ.  相似文献   
978.
Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.  相似文献   
979.
980.
Birt-Hogg-Dube (BHD) is a tumor suppressor gene disorder characterized by skin hamartomas, cystic lung disease, and renal cell carcinoma. The fact that hamartomas, lung cysts, and renal cell carcinoma can also occur in tuberous sclerosis complex (TSC) suggests that the BHD and TSC proteins may function within a common pathway. To evaluate this hypothesis, we deleted the BHD homolog in Schizosaccharomyces pombe. Expression profiling revealed that six permease and transporter genes, known to be down-regulated in Deltatsc1 and Deltatsc2, were up-regulated in Deltabhd, and levels of specific intracellular amino acids known to be low in Deltatsc1 and Deltatsc2 were elevated in Deltabhd. This "opposite" profile was unexpected, given the overlapping clinical phenotypes. The TSC1/2 proteins inhibit Rheb in mammals, and Tsc1/Tsc2 inhibit Rhb1 in S. pombe. Expression of a hypomorphic allele of rhb1(+) dramatically increased permease expression levels in Deltabhd but not in wild-type yeast. Loss of Bhd sensitized yeast to rapamycin-induced increases in permease expression levels, and rapamycin induced lethality in Deltabhd yeast expressing the hypomorphic Rhb1 allele. In S. pombe, it is known that Rhb1 binds Tor2, and Tor2 inhibition leads to up-regulation of permeases including those that are regulated by Bhd. Our data, therefore, suggest that Bhd activates Tor2. If the mammalian BHD protein, folliculin, similarly activates mammalian target of rapamycin, it will be of great interest to determine how mammalian target of rapamycin inhibition in BHD patients and mammalian target of rapamycin activation in TSC patients lead to overlapping clinical phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号