首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有37条查询结果,搜索用时 23 毫秒
11.
Small cell lung cancer (SCLC) is a difficult disease to treat and sometimes has overexpression or mutation of c-Met receptor tyrosine kinase. The effects of c-Met/hepatocyte growth factor (c-Met/HGF, ligand for c-Met) on activation of reactive oxygen species (ROS) was determined. HGF stimulation of c-Met-overexpressing H69 SCLC cells (40 ng/ml, 15 min) resulted in an increase of ROS, measured with fluorescent probe 2'-7'-dichlorofluorescein diacetate (DCFH-DA) or dihydroethidine (DHE) but not in c-Met-null H446 cells. ROS was increased in juxtamembrane (JM)-mutated variants (R988C and T1010I) of c-Met compared with wild-type c-Met-expressing cells. ROS was significantly inhibited by preincubation of SCLC cells with pyrrolidine dithiocarbamate (PDTC, 100 microM) and/or SU11274 (small molecule c-Met tyrosine kinase inhibitor, 2 microM) for 3 h. PDTC and SU11274 also abrogated the HGF proliferative signal and cell motility in a cooperative fashion. H(2)O(2) treatment of SCLC cells (over 15 min) led to phosphorylation of c-Met receptor tyrosine kinase and further upregulated downstream phosphorylation of phospho-AKT, ERK1/2, and paxillin in a dose-dependent manner (125 microM to 500 microM). c-Met is an important target in lung cancer, and the pathways responsible for ROS generation together may provide novel therapeutic intervention.  相似文献   
12.
It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.  相似文献   
13.
We describe a method to visualize green fluorescent protein (GFP)-labeled cells in intact organs through combined confocal and reflected laser light imaging. This method allows us a three-dimensional (3-D) view of specific cell types in situ. Imaging of tissues from transgenic mice in which the endothelial cells are labeled with GFP under the control of endothelial-specific tyrosine receptor kinase 2 (TIE2) shows the spatial distribution of the GFP-labeled endothelial cells in intact organs. We have used this method to examine the tissue necrosis in the intact heart and kidney resulting from myocardial and renal infarction. In myocardial infarction produced by surgically occluding the left anterior descending coronary artery, the border of the infarct was highly cellular and showed a disrupted endothelial network and scar tissue appearing as a dense layer of reflection. The induced renal infarction produced by ligating the renal artery in the pedicle showed a clear infarct border in the affected kidney. The 3-D reconstruction of specific cell types in the context of the surrounding tissues should be useful for studying the overall organization and the relationship between different structures in the intact organ in normal and disease states.  相似文献   
14.
Spider venoms are proving to be important sources of specific ion channel toxins. Venom of Agelenopsis aperta, a funnel web spider, contains a class of polypeptide toxins which blocks neuromuscular synapses at nanomolar concentrations. Detailed physiological analyses of block caused by one of these toxins, ω-Aga-I show that it suppresses transmitter release at insect and frog neuromuscular junctions and blocks calcium spikes in insect neuronal cell bodies. ω-Aga-I may define a binding site on neuronal calcium channels which is common to both vertebrates and invertebrates.  相似文献   
15.
16.
We have developed a method to visualize fluorescent protein-labeled beta-cells in the intact pancreas through combined reflection and confocal imaging. This method provides a 3-D view of the beta-cells in situ. Imaging of the pancreas from mouse insulin I promoter (MIP)-green (GFP) and red fluorescent protein (RFP) transgenic mice shows that islets, beta-cell clusters, and single beta-cells are not evenly distributed but are aligned along the large blood vessels. We also observe the solitary beta-cells in both fetal and adult mice and along the pancreatic and common bile ducts. We have imaged the developing endocrine cells in the embryos using neurogenin-3 (Ngn3)-GFP mice crossed with MIP-RFP mice. The dual-color-coded pancreas from embryos (E15.5) shows a large number of green Ngn3-expressing proendocrine cells with a smaller number of red beta-cells. The imaging technique that we have developed, coupled with the transgenic mice in which beta-cells and beta-cell progenitors are labeled with different fluorescent proteins, will be useful for studying pancreatic development and function in normal and disease states.  相似文献   
17.
Aggregates of Cu/Zn superoxide dismutase (SOD) have been demonstrated in familial amyotrophic lateral sclerosis (FALS) and other neurodegenerative diseases; however, their role in disease pathogenesis is unclear. In this study, we investigated the presence of SOD aggregates in nerve growth factor (NGF)-differentiated PC12 cells and cell viability following: (i) transduction with replication-deficient recombinant adenoviruses (AdVs) expressing wild-type SOD (SODWT) or mutant SOD (SODMT, V148G or A4V); (ii) transfection of yellow fluorescent protein-tagged SODWT (SODWT-YFP) or SODMT (SODA4V-YFP, SODV148G-YFP). SOD aggregates were more prominent in cells following transduction of AdSODMT than AdSODWT and following treatment with H2O2, suggesting that mutant SOD leads to oxidation of cellular components. In addition, cells expressing SODMT-YFP yielded SOD aggregates that were significantly larger and more frequent than SOD aggregates in cells expressing SODWT-YFP. Proteasome inhibitors, but not cathepsin B inhibitors, increased aggregate formation but did not increase cell death. In addition, treatments that increased cell viability did not significantly decrease SOD aggregates. Taken together, our data demonstrate that there is no association between SOD aggregates and cell death in FALS.  相似文献   
18.
19.
Secretion of lysosomes and related organelles is important for immune system function. High-resolution membrane capacitance techniques were used to track changes in membrane area in single phagocytes during opsonized polystyrene bead uptake and release. Secretagogue stimulation of cells preloaded with beads resulted in immediate vesicle discharge, visualized as step increases in capacitance. The size of the increases were consistent with phagosome size. This hypothesis was confirmed by direct observation of dye release from bead-containing phagosomes after secretagogue stimulation. Capacitance recordings of exocytosis were correlated with quantal free radical release, as determined by amperometry. Thus, phagosomes undergo regulated secretion in macrophages, one function of which may be to deliver sequestered free radicals to the extracellular space.  相似文献   
20.
To study effects of Bcl-x(L) in the pancreatic beta-cell, two transgenic lines were produced using different forms of the rat insulin promoter. Bcl-x(L) expression in beta-cells was increased 2- to 3-fold in founder (Fd) 1 and over 10-fold in Fd 2 compared with littermate controls. After exposure to thapsigargin (10 microM for 48 h), losses of cell viability in islets of Fd 1 and Fd 2 Bcl-x(L) transgenic mice were significantly lower than in islets of wild-type mice. Unexpectedly, severe glucose intolerance was observed in Fd 2 but not Fd 1 Bcl-x(L) mice. Pancreatic insulin content and islet morphology were not different from control in either transgenic line. However, Fd 2 Bcl-x(L) islets had impaired insulin secretory and intracellular free Ca(2+) ([Ca(2+)](i)) responses to glucose and KCl. Furthermore, insulin and [Ca(2+)](i) responses to pyruvate methyl ester (PME) were similarly reduced as glucose in Fd 2 Bcl-x(L) islets. Consistent with a mitochondrial defect, glucose oxidation, but not glycolysis, was significantly lower in Fd 2 Bcl-x(L) islets than in wild-type islets. Glucose-, PME-, and alpha-ketoisocaproate-induced hyperpolarization of mitochondrial membrane potential, NAD(P)H, and ATP production were also significantly reduced in Fd 2 Bcl-x(L) islets. Thus, although Bcl-x(L) promotes beta-cell survival, high levels of expression of Bcl-x(L) result in reduced glucose-induced insulin secretion and hyperglycemia due to a defect in mitochondrial nutrient metabolism and signaling for insulin secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号