首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1639篇
  免费   126篇
  2022年   13篇
  2021年   29篇
  2020年   10篇
  2019年   26篇
  2018年   25篇
  2017年   24篇
  2016年   39篇
  2015年   55篇
  2014年   72篇
  2013年   99篇
  2012年   95篇
  2011年   91篇
  2010年   72篇
  2009年   51篇
  2008年   71篇
  2007年   65篇
  2006年   78篇
  2005年   59篇
  2004年   55篇
  2003年   48篇
  2002年   43篇
  2001年   61篇
  2000年   35篇
  1999年   41篇
  1998年   11篇
  1997年   13篇
  1996年   15篇
  1995年   16篇
  1994年   8篇
  1993年   15篇
  1992年   27篇
  1991年   31篇
  1990年   35篇
  1989年   26篇
  1988年   24篇
  1987年   20篇
  1986年   18篇
  1985年   28篇
  1984年   27篇
  1983年   16篇
  1982年   22篇
  1981年   17篇
  1980年   13篇
  1979年   16篇
  1977年   11篇
  1975年   11篇
  1974年   10篇
  1973年   13篇
  1971年   7篇
  1967年   8篇
排序方式: 共有1765条查询结果,搜索用时 31 毫秒
91.

Background

Precision medicine aims to combat the variability of the therapeutic response to a given medicine by delivering the right medicine to the right patient. However, the application of precision medicine is predicated on a prior quantitation of the variance of the reference range of normality. Airway pathophysiology provides a good example due to a very variable first line of defence against airborne assault. Humans differ in their susceptibility to inhaled pollutants and pathogens in part due to the magnitude of trans-epithelial resistance that determines the degree of epithelial penetration to the submucosal space. This initial ‘set-point’ may drive a sentinel event in airway disease pathogenesis. Epithelia differentiated in vitro from airway biopsies are commonly used to model trans-epithelial resistance but the ‘reference range of normality’ remains problematic. We investigated the range of electrophysiological characteristics of human airway epithelia grown at air-liquid interface in vitro from healthy volunteers focusing on the inter- and intra-subject variability both at baseline and after sequential exposure to drugs modulating ion transport.

Methodology/Principal Findings

Brushed nasal airway epithelial cells were differentiated at air-liquid interface generating 137 pseudostratified ciliated epithelia from 18 donors. A positively-skewed baseline range exists for trans-epithelial resistance (Min/Max: 309/2963 Ω·cm2), trans-epithelial voltage (-62.3/-1.8 mV) and calculated equivalent current (-125.0/-3.2 μA/cm2; all non-normal, P<0.001). A minority of healthy humans manifest a dramatic amiloride sensitivity to voltage and trans-epithelial resistance that is further discriminated by prior modulation of cAMP-stimulated chloride transport.

Conclusions/Significance

Healthy epithelia show log-order differences in their ion transport characteristics, likely reflective of their initial set-points of basal trans-epithelial resistance and sodium transport. Our data may guide the choice of the background set point in subjects with airway diseases and frame the reference range for the future delivery of precision airway medicine.  相似文献   
92.
93.
Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0–2.0 × 106 cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples.  相似文献   
94.
95.
96.
Amyloid‐like peptides are an ideal model for the mechanistic study of amyloidosis, which may lead to many human diseases, such as Alzheimer disease. This study reports a strong second harmonic generation (SHG) effect of amyloid‐like peptides, having a signal equivalent to or even higher than those of endogenous collagen fibers. Several amyloid‐like peptides (both synthetic and natural) were examined under SHG microscopy and shown they are SHG‐active. These peptides can also be observed inside cells (in vitro). This interesting property can make these amyloid‐like peptides second harmonic probes for bioimaging applications. Furthermore, SHG microscopy can provide a simple and label‐free approach to detect amyloidosis. Lattice corneal dystrophy was chosen as a model disease of amyloidosis. Morphological difference between normal and diseased human corneal biopsy samples can be easily recognized, proving that SHG can be a useful tool for disease diagnosis.  相似文献   
97.
98.
99.
There is growing interest within the biopharmaceutical industry to improve manufacturing efficiency through process intensification, with the goal of generating more product in less time with smaller equipment. In monoclonal antibody (mAb) purification, a unit operation that can benefit from intensification is anion exchange (AEX) polishing chromatography. Single-pass tangential flow filtration (SPTFF) technology offers an opportunity for process intensification by reducing intermediate pool volumes and increasing product concentration without recirculation. This study evaluated the performance of an AEX resin, both in terms of host cell protein (HCP) purification and viral clearance, following concentration of a mAb feed using SPTFF. Results show that preconcentration of AEX feed material improved isotherm conditions for HCP binding, resulting in a fourfold increase in resin mAb loading at the target HCP clearance level. Excellent clearance of minute virus of mouse and xenotropic murine virus was maintained at this higher load level. The increased mAb loading enabled by SPTFF preconcentration effectively reduced AEX column volume and buffer requirements, shrinking the overall size of the polishing step. In addition, the suitability of SPTFF for extended processing time operation was demonstrated, indicating that this approach can be implemented for continuous biomanufacturing. The combination of SPTFF concentration and AEX chromatography for an intensified mAb polishing step which improves both manufacturing flexibility and process productivity is supported.  相似文献   
100.
Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content   总被引:1,自引:0,他引:1  
Glyoxal, a reactive dicarbonyl, is detoxified primarily by the glyoxalase system utilizing glutathione (GSH) and by the aldo-keto reductase enzymes which utilizes NAD[P]H as the co-factor. Thiamin (Vitamin B(1)) is an essential coenzyme for transketolase (TK) that is part of the pentose phosphate pathway which helps maintain cellular NADPH levels. NADPH plays an intracellular role in regenerating glutathione (GSH) from oxidized GSH (GSSG), thereby increasing the antioxidant defenses of the cell. In this study we have focused on the prevention of glyoxal toxicity by supplementation with thiamin (3mM). Thiamin was cytoprotective and restored NADPH levels, glyoxal detoxification and mitochondrial membrane potential. Hepatocyte reactive oxygen species (ROS) formation, lipid peroxidation and GSH oxidation were decreased. Furthermore, hepatocytes were made thiamin deficient with oxythiamin (3mM) as measured by the decreased hepatocyte TK activity. Under thiamin deficient conditions a non-toxic dose of glyoxal (2mM) became cytotoxic and glyoxal metabolism decreased; while ROS formation, lipid peroxidation and GSH oxidation was increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号