首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1640篇
  免费   126篇
  2022年   14篇
  2021年   29篇
  2020年   10篇
  2019年   26篇
  2018年   25篇
  2017年   24篇
  2016年   39篇
  2015年   55篇
  2014年   72篇
  2013年   99篇
  2012年   95篇
  2011年   91篇
  2010年   72篇
  2009年   51篇
  2008年   71篇
  2007年   65篇
  2006年   78篇
  2005年   59篇
  2004年   55篇
  2003年   48篇
  2002年   43篇
  2001年   61篇
  2000年   35篇
  1999年   41篇
  1998年   11篇
  1997年   13篇
  1996年   15篇
  1995年   16篇
  1994年   8篇
  1993年   15篇
  1992年   27篇
  1991年   31篇
  1990年   35篇
  1989年   26篇
  1988年   24篇
  1987年   20篇
  1986年   18篇
  1985年   28篇
  1984年   27篇
  1983年   16篇
  1982年   22篇
  1981年   17篇
  1980年   13篇
  1979年   16篇
  1977年   11篇
  1975年   11篇
  1974年   10篇
  1973年   13篇
  1971年   7篇
  1967年   8篇
排序方式: 共有1766条查询结果,搜索用时 31 毫秒
151.
Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer''s clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71+ reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm.  相似文献   
152.
153.
Vitamin E is an essential nutrient for human health, with an established function as a lipid-soluble antioxidant that protects cell membranes from free radical damage. Low vitamin E status has been linked to multiple health outcomes, including total mortality. With vitamin E being identified as a ‘shortfall nutrient’ because >90% of American adults are not consuming recommended amounts of vitamin E, we aimed to determine the prevalence of both clinical vitamin E deficiency (serum α-tocopherol concentration < 12 μmol/L) and failure to meet a criterion of vitamin E adequacy, serum α-tocopherol concentration of 30 μmol/L, based on the Estimated Average Requirement (EAR) and lowest mortality rate in the Alpha-Tocopherol Beta-Carotene (ATBC) study. The most recent nationally-representative cross-sectional data (2003–2006) among non-institutionalized US citizens with available serum concentrations of α-tocopherol from the National Health and Nutrition Examination Survey (NHANES); Centers for Disease Control and Prevention were analyzed. Serum α-tocopherol distributions were compared between those reporting consumption of food without supplement use (FOOD) and food and supplement use (FOOD+DS) by sex, age, and race/ethnicity. Only 1% of the US population is clinically deficient. FOOD consumers have lower average α-tocopherol levels (24.9± 0.2 μmol/L) than FOOD+DS users (33.7 ± 0.3 μmol/L), even when adjusted for total cholesterol. Using a criterion of adequacy of 30 μmol/L, 87% of persons 20-30y and 43% of those 51+y had inadequate vitamin E status (p<0.01). A significant greater prevalence of FOOD compared to FOOD+DS users did not meet the criterion of adequacy which was based on the EAR and low ATBC mortality rate consistently across age, sex, and race/ethnic groups. The prevalence of inadequate vitamin E levels is significantly higher among non-users of dietary supplements. With declining usage of vitamin E supplements, the population should be monitored for changes in vitamin E status and related health outcomes.  相似文献   
154.
155.
Chloride is an indispensable factor for the functioning of oxygen evolving complex (OEC) and has protective and activating effects on photosystem II. In this study we have investigated mainly by EPR, the properties of chloride-sufficient, chloride-deficient and chloride-depleted thylakoid membranes and photosystem II enriched membranes from spinach. The results on the effects of different chloride depletion methods on the structural and functional aspects of photosystem II showed that chloride-depletion by treating PS II membranes with high pH is a relatively harsh way causing a significant and irreparable damage to the PS II donor side. Damage to the acceptor side of PS II was recovered almost fully in chloride-deficient as well as chloride-depleted PS II membranes.  相似文献   
156.
Human cancers have multiple alterations in cell signaling pathways that promote resistance to cytotoxic therapy such as X rays. Parthenolide is a sesquiterpene lactone that has been shown to inhibit several pro-survival cell signaling pathways, induce apoptosis, and enhance chemotherapy-induced cell killing. We investigated whether parthenolide would enhance X-ray-induced cell killing in radiation resistant, NF-kappaB-activated CGL1 cells. Treatment with 5 microM parthenolide for 48 to 72 h inhibited constitutive NF-kappaB binding and cell growth, reduced plating efficiency, and induced apoptosis through stabilization of p53 (TP53), induction of the pro-apoptosis protein BAX, and phosphorylation of BID. Parthenolide also enhanced radiation-induced cell killing, increasing the X-ray sensitivity of CGL1 cells by a dose modification factor of 1.6. Flow cytometry revealed that parthenolide reduced the percentage of X-ray-resistant S-phase cells due to induction of p21 waf1/cip1 (CDKN1A) and the onset of G1/S and G2/M blocks, but depletion of radioresistant S-phase cells does not explain the observed X-ray sensitization. Further studies demonstrated that the enhancement of X-ray-induced cell killing by parthenolide is due to inhibition of split-dose repair.  相似文献   
157.
158.
Numerous studies have now shown that the amyloid beta-protein (Abeta), the principal component of cerebral plaques in Alzheimer disease, rapidly and potently inhibits certain forms of synaptic plasticity. The amyloid (or Abeta) hypothesis proposes that the continuous disruption of normal synaptic physiology by Abeta contributes to the development of Alzheimer disease. However, there is little consensus about how Abeta mediates this inhibition at the molecular level. Using mouse primary hippocampal neurons, we observed that a brief treatment with cell-derived, soluble, human Abeta disrupted the activation of three kinases (Erk/MAPK, CaMKII, and the phosphatidylinositol 3-kinase-activated protein Akt/protein kinase B) that are required for long term potentiation, whereas two other kinases (protein kinase A and protein kinase C) were stimulated normally. An antagonist of the insulin receptor family of tyrosine kinases was found to mimic the pattern of Abeta-mediated kinase inhibition. We then found that soluble Abeta binds to the insulin receptor and interferes with its insulin-induced autophosphorylation. Taken together, these data demonstrate that physiologically relevant levels of naturally secreted Abeta interfere with insulin receptor function in hippocampal neurons and prevent the rapid activation of specific kinases required for long term potentiation.  相似文献   
159.
Cerebral beta-amyloid angiopathy (CAA) is an age-related disorder of the brain vasculature that is involved in up to 20% of non-traumatic cerebral hemorrhage in humans. CAA is a risk factor for cognitive decline, and may exacerbate the dementia of Alzheimer's disease. Progress in discovering the cause and potential therapies for this disorder has been hindered by the paucity of animal models, particularly models of idiopathic CAA. The squirrel monkey (Saimiri spp) develops significant CAA in the natural course of aging. To evaluate the suitability of Saimiri as a model of human CAA, we studied the distribution and composition of Abeta subtypes in CAA and parenchymal (senile plaque) deposits in the brains of aged squirrel monkeys, as well as the relationship between vascular beta-amyloid deposition and comorbid vasculopathies that occur in aged humans. Our findings show that: 1) CAA consists ultrastructurally of classical amyloid fibrils and is the principal type of cerebral beta-amyloidosis in squirrel monkeys; 2) The two primary isoforms of Abeta (Abeta40 and Abeta42) coexist in most microvascular and parenchymal lesions of Saimiri, although Abeta40 tends to predominate in larger arterioles; 3) CAA and parenchymal plaques overlap to a considerable degree in most affected brain areas, and are distributed symmetrically in the two hemispheres; 4) Both CAA and plaques are particularly abundant in rostral regions and comparatively sparse in the occipital lobe; 5) Capillaries are especially vulnerable to CAA in squirrel monkeys; and 6) When CAA is severe, it is associated with a small, but significant, increase in other vasculopathies, including microhemorrhage, fibrinoid extravasation and focal gliosis. These findings, in the context of genetic, vascular and immunologic similarities between squirrel monkeys and humans, support the squirrel monkey as a biologically advantageous model for studying the basic biology of idiopathic, age-related CAA, and for testing emerging therapies for human beta-amyloidoses such as Alzheimer's disease.  相似文献   
160.
We identified the GDI-1-regulated mechanism of RhoA activation from the Rho-GDI-1 complex and its role in mediating increased endothelial permeability. Thrombin stimulation failed to induce RhoA activation and actin stress fiber formation in human pulmonary arterial endothelial cells transduced with full-length GDI-1. Expression of a GDI-1 mutant form (C-GDI) containing the C terminus (aa 69 to 204) also prevented RhoA activation, whereas further deletions failed to alter RhoA activation. We observed that protein kinase Calpha-mediated phosphorylation of the C terminus of GDI-1 at Ser96 reduced the affinity of GDI-1 for RhoA and thereby enabled RhoA activation. Rendering GDI-1 phosphodefective with a Ser96 --> Ala substitution rescued the inhibitory activity of GDI-1 toward RhoA but did not alter the thrombin-induced activation of other Rho GTPases, i.e., Rac1 and Cdc42. Phosphodefective mutant GDI-1 also suppressed myosin light chain phosphorylation, actin stress fiber formation, and the increased endothelial permeability induced by thrombin. In contrast, expressing the phospho-mimicking mutant S96D-GDI-1 protein induced RhoA activity and increased endothelial permeability independently of thrombin stimulation. These results demonstrate the crucial role of the phosphorylation of the C terminus of GDI-1 at S96 in selectively activating RhoA. Inhibiting GDI-1 phosphorylation at S96 is a potential therapeutic target for modulating RhoA activity and thus preventing the increase in endothelial permeability associated with vascular inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号