首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99865篇
  免费   989篇
  国内免费   1501篇
  102355篇
  2024年   24篇
  2023年   81篇
  2022年   227篇
  2021年   343篇
  2020年   247篇
  2019年   289篇
  2018年   12052篇
  2017年   10860篇
  2016年   7701篇
  2015年   1021篇
  2014年   809篇
  2013年   854篇
  2012年   4806篇
  2011年   13261篇
  2010年   12281篇
  2009年   8496篇
  2008年   10116篇
  2007年   11649篇
  2006年   553篇
  2005年   761篇
  2004年   1219篇
  2003年   1227篇
  2002年   1023篇
  2001年   445篇
  2000年   320篇
  1999年   161篇
  1998年   131篇
  1997年   115篇
  1996年   89篇
  1995年   74篇
  1994年   69篇
  1993年   79篇
  1992年   71篇
  1991年   76篇
  1990年   33篇
  1989年   26篇
  1988年   43篇
  1987年   33篇
  1986年   11篇
  1985年   13篇
  1984年   36篇
  1983年   24篇
  1982年   8篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC) are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.  相似文献   
992.
993.
Transgeni根癌农杆菌介导的小麦转基因植株再生(英文)   总被引:1,自引:0,他引:1  
根癌农杆菌菌株Agl Ⅰ的Ti 质粒pUNN-2 带有Ubi1 启动子驱动的npt Ⅱ基因。7 种基因型小麦幼胚或胚性愈伤组织用于农杆菌介导的转化实验。经过不同浓度巴龙霉素的筛选,3 种基因型小麦产生抗性愈伤组织并再生植株。再生植株经PCR 和Southern 杂交鉴定为转基因植株,转化频率( 再生转基因植株的小麦愈伤组织数/ 用于转化实验的愈伤组织数) 为3.7% ~5 .9% 。小麦基因型及转化材料的起始生理状态是影响TDNA转移的重要因素。  相似文献   
994.
构建了含有恶性疟原虫抗原基因 ( AWTE)的真核表达质粒 p CMV- AWTE,以及能在大肠杆菌中得到分泌性表达的原核表达质粒 p MC0 5 ,表达的蛋白 AWTE保持了疟原虫抗原的抗原性。将 p CMV- AWTE以及 AWTE两者混合各 1 0μg鼻腔免疫小鼠 ,一次后诱导机体产生了较高水平的体液免疫及细胞免疫  相似文献   
995.
Magnesium nutrition is often forgotten, while its absence adversely affects numerous functions in plants. Magnesium deficiency is a growing concern for crop production frequently observed in lateritic and leached acid soils. Competition with other cations (Ca2+, Na+, and K+) is also found to be an essential factor, inducing magnesium deficiency in plants. This nutrient is required for chlorophyll formation and plays a key role in photosynthetic activity. Moreover, it is involved in carbohydrate transport from source-to-sink organs. Hence, sugar accumulation in leaves that results from the impairment of their transport in phloem is considered as an early response to Mg deficiency. The most visible effect is often recorded in root growth, resulting in a significant reduction of root/shoot ratio. Carbohydrate accumulation in source leaves is attributed to the unique chemical proprieties of magnesium. As magnesium is a nutrient with high mobility in plants, it is preferentially transported to source leaves to prevent severe declines in photosynthetic activity. In addition, Mg is involved in the source-to-sink transport of carbohydrates. Hence, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. We hereby review all these aspects with a special emphasis on the role of Mg in photosynthesis and the structural and functional effects of its deficiency on the photosynthetic apparatus.  相似文献   
996.
Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage–bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.  相似文献   
997.
Increasing evidence has shown that specificity protein 1 (Sp1) is abnormally increased in the brains of subjects with Alzheimer’s disease (AD) and transgenic AD models. However, whether the Sp1 activation plays a critical role in the AD pathogenesis and selective inhibition of Sp1 activation may have a disease-modifying effect on the AD-like phenotypes remain elusive. In this study, we reported that Sp1 mRNA and protein expression were markedly increased in the brain of APPswe/PS1dE9 transgenic mice, whereas chronic administration of mithramycin A (MTM), a selective Sp1 inhibitor, potently inhibited Sp1 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, we found that MTM treatment resulted in a significant improvement of learning and memory deficits, a dramatic reduction in cerebral Aβ levels and plaque burden, a profound reduction in tau hyperphosphorylation, and a marked increase in synaptic marker in the APPswe/PS1dE9 mice. In addition, MTM treatment was powerfully effective in inhibiting amyloid precursor protein (APP) processing via suppressing APP, beta-site APP cleaving enzyme 1 (BACE1), and presenilin-1 (PS1) mRNA and protein expression to preclude Aβ production in the APPswe/PS1dE9 mice. Furthermore, MTM treatment strongly inhibited phosphorylated CDK5 and GSK3β signal pathways to reduce tau hyperphosphorylation in the APPswe/PS1dE9 mice. Collectively, our findings provide evidence that Sp1 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD. The present study highlights that selective Sp1 inhibitors may be considered as disease-modifying therapeutic agents for AD.  相似文献   
998.
我国盐碱土面积约9913万hm2,其中pH值高于9、盐含量大于0.6%的重度盐碱地每年以1.4%的速率增长。利用固氮微生物改善植物根际环境,提高作物产量,是盐碱地改良的重要方法。[目的] 从来自海南省三沙市热带珊瑚岛礁的土壤中,分离鉴定自生固氮菌,为极端盐碱地改良提供候选菌株。[方法] 通过形态学观察、生理生化特征分析和16S rRNA序列测定等方法进行菌种鉴定,分析其固氮、耐盐碱和促生长特性,盆栽试验验证其对玉米主要农艺性状的影响。[结果] 获得1株极端耐盐碱的固氮细菌DJ-1,其菌落呈圆形,菌体杆状,大小(0.5-1.3)μm×(0.3-0.5)μm,革兰氏染色阴性,与根癌土壤杆菌(Agrobacterium tumefaciens)的16S rRNA序列高度同源,确定其为根癌土壤杆菌。DJ-1在pH 9、NaCl含量为1%-4%的培养基上可正常生长,能耐受pH 12、NaCl含量8%的环境。从中克隆到固氮酶基因nifH。盆栽试验结果表明,DJ-1可显著促进玉米生长。[结论] 菌株DJ-1能耐受极端盐碱条件,且具有较强的固氮和促生长能力,有可能作为贫瘠盐碱耕地改良功能菌剂的候选菌株。  相似文献   
999.
Behavioural counselling by nurses can enhance quality of life in elderly with a personality disorder. Although nurses have a crucial role in day-to-day treatment, there is a lack of evidence-based approaches. Based on the cognitive therapy, the treatment protocol Cognitive Model for Behavioural Interventions (CoMBI) provides an alternative nursing approach for personality disorders.  相似文献   
1000.
The extensive use of antibiotics for the treatment of human infections during the last few decades has led to a dramatic increase in the emergence of multidrug-resistant bacteria (MDRB) among various bacterial strains. Global research is currently focused on finding novel alternative agents with different mechanisms of action rather than the use of conventional antibiotics to counteract the threat of bacterial and biofilm infections. Antimicrobial peptides represent promising alternative agents for conventional antibiotics as these molecules display a broad spectrum of activity against several microorganisms. Recently, we have designed a novel hybrid antimicrobial peptide named MelitAP-27. This peptide has been found to display potent broad spectrum and selective in vitro antimicrobial activities against a wide range of Gram-positive and Gram-negative bacteria. In the present study, the in vitro antimicrobial and antibiofilm activities of the peptide alone and in combination with five different types of antibiotics were assessed against wild-type and resistant Gram-positive and Gram-negative bacterial strains. Our results showed that most of the combination groups displayed a synergistic mode of action against planktonic and biofilm forming bacteria which resulted in decreasing the effective MIC values for MelitAP-27 to the nanomolar concentrations. These effective concentrations were associated with negligible toxicities on mammalian cells. The results of our study indicate that combinations of MelitAP-27 with conventional antibiotics may be pursued as a potential novel treatment strategy against MDRB and biofilm forming bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号