首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121217篇
  免费   2666篇
  国内免费   3727篇
  2024年   99篇
  2023年   398篇
  2022年   927篇
  2021年   1625篇
  2020年   1107篇
  2019年   1375篇
  2018年   12876篇
  2017年   11372篇
  2016年   8619篇
  2015年   2474篇
  2014年   2516篇
  2013年   2677篇
  2012年   6851篇
  2011年   15065篇
  2010年   13384篇
  2009年   9525篇
  2008年   11315篇
  2007年   12707篇
  2006年   1488篇
  2005年   1583篇
  2004年   1833篇
  2003年   1809篇
  2002年   1409篇
  2001年   668篇
  2000年   592篇
  1999年   442篇
  1998年   267篇
  1997年   274篇
  1996年   251篇
  1995年   218篇
  1994年   198篇
  1993年   165篇
  1992年   190篇
  1991年   156篇
  1990年   128篇
  1989年   86篇
  1988年   77篇
  1987年   67篇
  1986年   36篇
  1985年   41篇
  1984年   28篇
  1983年   34篇
  1982年   29篇
  1975年   8篇
  1972年   247篇
  1971年   274篇
  1965年   14篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5'' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.  相似文献   
932.
Alternative splicing greatly contributes to the structural and functional diversity of voltage-gated sodium channels (VGSCs) by generating various isoforms with unique functional and pharmacological properties. Here, we identified a new optional exon 23 located in the linker between domains II and III, and four mutually exclusive exons (exons 27A, 27B, 27C, and 27D) in domains IIIS3 and IIIS4 of the sodium channel of Liposcelis bostrychophila (termed as LbVGSC). This suggested that more alternative splicing phenomena remained to be discovered in VGSCs. Inclusion of exon 27C might lead to generation of non-functional isoforms. Meanwhile, identification of three alternative exons (exons 11, 13A, and 13B), which were located in the linker between domains II and III, indicated that abundant splicing events occurred in the DSC1 ortholog channel of L. bostrychophila (termed as LbSC1). Exons 13A and 13B were generated by intron retention, and the presence of exon 13B relied on the inclusion of exon 13A. Exon 13B was specifically expressed in the embryonic stage and contained an in-frame stop codon, inclusion of which led to generation of truncated proteins with only the first two domains. Additionally, several co-occurring RNA editing events were identified in LbSC1. Furthermore, remarkable similarity between the structure and expression patterns of LbVGSC and LbSC1 were discovered, and a closer evolutionary relationship between VGSCs and DSC1 orthologs was verified. Taken together, the data provided abundant molecular information on VGSC and DSC1 orthologs in L. bostrychophila, a representative Psocoptera storage pest, and insights into the alternative splicing of these two channels.  相似文献   
933.
Type 2C Ser/Thr phosphatases (PP2Cs) are involved in various cellular processes in many eukaryotes, but little has been known about their functions in filamentous fungi. Botrytis cinerea contains four putative PP2C genes, named BcPTC1, ‐3, ‐5, and ‐6. Biological functions of these genes were analysed by gene deletion and complementation. While no phenotypes aberrant from the wild type were observed with mutants of BcPTC5 and BcPTC6, mutants of BcPTC1 and BcPTC3 had reduced hyphal growth, increased conidiation, and impaired sclerotium development. Additionally, BcPTC1 and BcPTC3 mutants exhibited increased sensitivity to osmotic and oxidative stresses, and to cell wall degrading enzymes. Both mutants exhibited dramatically decreased virulence on host plant tissues. All of the defects were restored by genetic complementation of the mutants with wild‐type BcPTC1 and BcPTC3 respectively. Different from what is known in Saccharomyces cerevisiae, BcPtc3, but not BcPtc1, negatively regulates phosphorylation of BcSak1 (the homologue of S. cerevisiae Hog1) in B. cinerea, although both BcPTC1 and BcPTC3 were able to rescue the growth defects of a yeast PTC1 deletion mutant under various stress conditions. These results demonstrated that BcPtc1 and BcPtc3 play important roles in the regulation of multiple stress tolerance and virulence of B. cinerea.  相似文献   
934.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   
935.
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter‐regulated expression of the Arabidopsis ethylene receptor mutant ethylene‐insensitive1‐1 (etr1‐1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1‐1‐expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1‐1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1‐1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence‐related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1‐1 expression alters tolerance to pathogens.  相似文献   
936.
937.
938.
Diabetes is a metabolic disorder characterized by hyperglycemia. Insulin, which is secreted by pancreatic beta cells, is recognized as the critical regulator of blood glucose, but the molecular machinery responsible for insulin trafficking remains poorly defined. In particular, the roles of cytosolic factors that govern the formation and maturation of insulin granules are unclear. Here we report that PICK1 and ICA69, two cytosolic lipid-binding proteins, formed heteromeric BAR-domain complexes that associated with insulin granules at different stages of their maturation. PICK1-ICA69 heteromeric complexes associated with immature secretory granules near the trans-Golgi network (TGN). A brief treatment of Brefeldin A, which blocks vesicle budding from the Golgi, increased the amount of PICK1 and ICA69 at TGN. On the other hand, mature secretory granules were associated with PICK1 only, not ICA69. PICK1 deficiency in mice caused the complete loss of ICA69 and led to increased food and water intake but lower body weight. Glucose tolerance tests demonstrated that these mutant mice had high blood glucose, a consequence of insufficient insulin. Importantly, while the total insulin level was reduced in PICK1-deficient beta cells, proinsulin was increased. Lastly, ICA69 knockout mice also displayed similar phenotype as the mice deficient in PICK1. Together, our results indicate that PICK1 and ICA69 are key regulators of the formation and maturation of insulin granules.

Author Summary

Insulin is a key regulator of blood glucose and insufficient insulin leads to diabetes. Insulin is synthesized as proinsulin, processed in endoplasmic reticulum and Golgi, and eventually packaged into insulin granules, a type of dense core vesicles. Despite its importance, the molecular mechanisms governing the biogenesis and maturation of insulin granules are not fully understood. In this study, we identified two cytosolic proteins, PICK1 and ICA69, as important regulators of insulin granule biogenesis and maturation. Both PICK1 and ICA69 have the banana-shaped BAR domain that can bend the lipid membrane and help the formation of dense core vesicles. We show that without PICK1 or ICA69, insulin granules cannot be properly formed and, as a result, proinsulin cannot be effectively processed into mature insulin. Mice lacking functional PICK1 or ICA69 genes have reduced insulin but increased proinsulin. Consequently, these mice have high levels of glucose, a prominent feature found in diabetes patients. These results add to previous findings that PICK1 is important for the generation of proacrosomal granules found in cells of the testis, and thereby support a wider role for PICK1 and ICA69 in regulating dense core vesicle biogenesis and maturation.  相似文献   
939.
940.

Background

Esterases with excellent merits suitable for commercial use in ester production field are still insufficient. The aim of this research is to advance our understanding by seeking for more unusual esterases and revealing their characterizations for ester synthesis.

Methodology/Principal Findings

A novel esterase-encoding gene from Rhizomucor miehei (RmEstA) was cloned and expressed in Escherichia coli. Sequence analysis revealed a 975-bp ORF encoding a 324-amino-acid polypeptide belonging to the hormone-sensitive lipase (HSL) family IV and showing highest similarity (44%) to the Paenibacillus mucilaginosus esterase/lipase. Recombinant RmEstA was purified to homogeneity: it was 34 kDa by SDS-PAGE and showed optimal pH and temperature of 6.5 and 45°C, respectively. The enzyme was stable to 50°C, under a broad pH range (5.0–10.6). RmEstA exhibited broad substrate specificity toward p-nitrophenol esters and short-acyl-chain triglycerols, with highest activities (1,480 U mg−1 and 228 U mg−1) for p-nitrophenyl hexanoate and tributyrin, respectively. RmEstA efficiently synthesized butyl butyrate (92% conversion yield) when immobilized on AOT-based organogel.

Conclusion

RmEstA has great potential for industrial applications. RmEstA is the first reported esterase from Rhizomucor miehei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号