首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119419篇
  免费   2761篇
  国内免费   4411篇
  126591篇
  2024年   97篇
  2023年   437篇
  2022年   890篇
  2021年   1456篇
  2020年   1066篇
  2019年   1304篇
  2018年   12863篇
  2017年   11343篇
  2016年   8478篇
  2015年   2453篇
  2014年   2467篇
  2013年   2545篇
  2012年   6855篇
  2011年   15071篇
  2010年   13413篇
  2009年   9619篇
  2008年   11320篇
  2007年   12738篇
  2006年   1488篇
  2005年   1553篇
  2004年   1894篇
  2003年   1807篇
  2002年   1430篇
  2001年   653篇
  2000年   558篇
  1999年   385篇
  1998年   265篇
  1997年   256篇
  1996年   212篇
  1995年   141篇
  1994年   163篇
  1993年   115篇
  1992年   120篇
  1991年   111篇
  1990年   79篇
  1989年   49篇
  1988年   57篇
  1987年   42篇
  1986年   17篇
  1985年   31篇
  1984年   24篇
  1983年   35篇
  1982年   29篇
  1972年   250篇
  1971年   275篇
  1965年   22篇
  1962年   24篇
  1950年   7篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Compared to conjugated polymers, small‐molecule organic semiconductors present negligible batch‐to‐batch variations, but presently provide comparatively low power conversion efficiencies (PCEs) in small‐molecular organic solar cells (SM‐OSCs), mainly due to suboptimal nanomorphology. Achieving precise control of the nanomorphology remains challenging. Here, two new small‐molecular donors H13 and H14 , created by fluorine and chlorine substitution of the original donor molecule H11 , are presented that exhibit a similar or higher degree of crystallinity/aggregation and improved open‐circuit voltage with IDIC‐4F as acceptor. Due to kinetic and thermodynamic reasons, H13 ‐based blend films possess relatively unfavorable molecular packing and morphology. In contrast, annealed H14 ‐based blends exhibit favorable characteristics, i.e., the highest degree of aggregation with the smallest paracrystalline π–π distortions and a nanomorphology with relatively pure domains, all of which enable generating and collecting charges more efficiently. As a result, blends with H13 give a similar PCE (10.3%) as those made with H11 (10.4%), while annealed H14 ‐based SM‐OSCs have a significantly higher PCE (12.1%). Presently this represents the highest efficiency for SM‐OSCs using IDIC‐4F as acceptor. The results demonstrate that precise control of phase separation can be achieved by fine‐tuning the molecular structure and film formation conditions, improving PCE and providing guidance for morphology design.  相似文献   
992.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   
993.
Li‐rich manganese based oxides (LRMOs) are considered an attractive high‐capacity cathode for advanced Li‐ion batteries; however, their poor cyclability and gradual voltage fading have hindered their practical applications. Herein, an efficient and facile strategy is proposed to stabilize the lattice structure of LRMOs by surface modification of polyacrylic acid (PAA). The PAA‐coated LRMO electrode exhibits only 104 mV of the voltage fading after 100 cycles and 88% capacity retention over 500 cycles. The structural stability is attributed to the carboxyl groups in PAA chains reacting with oxygen species on the surface of LRMO to form a uniform and tightly coated film, which significantly suppresses the dissolution of transition metal elements from the cathode materials into the electrolyte. Importantly, a H+/Li+ exchange reaction takes place between the LRMO and PAA, generating a proton‐doped surface layer. Density functional theory calculations and experimental evidence demonstrates that the H+ ions in the surface lattice efficiently inhibit the migration of transition metal ions, leading to a stabilized lattice structure. This surface modification approach may provide a new route to building a stable Li‐rich oxide cathode with high capacity retention and low voltage fading for practical Li‐ion battery applications.  相似文献   
994.
The emodin anthraquinone derivatives are generally used in traditional Chinese medicine due to their various pharmacological activities. In the present study, a series of emodin anthraquinone derivatives have been designed and synthesized, among which 1,3‐dihydroxy‐6,8‐dimethoxyanthracene‐9,10‐dione is a natural compound that has been synthesized for the very first time, and 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione is a compound that has never been reported earlier. Interestingly, while total seven of these compounds showed neuraminidase inhibitory activity in influenza virus with inhibition rate more than 50 %, specific four compounds exhibited significant inhibition of tumor cell proliferation. The further results demonstrate that 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione showed the best anticancer activity among all the synthesized compounds by inducing highest apoptosis rate to HCT116 cancer cells and arresting their G0/G1 cell cycle phase, through elevation of intracellular level of reactive oxygen species (ROS). Moreover, the binding of 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione with BSA protein has thoroughly been investigated. Altogether, this study suggests the neuraminidase inhibitory activity and antitumor potential of the new emodin anthraquinone derivatives.  相似文献   
995.
A series of aryloxyethylamine derivatives were designed, synthesized and evaluated for their biological activity. Their structures were confirmed by 1H‐NMR, 13C‐NMR, FT‐IR and HR‐ESI‐MS. The preliminary screening of neuroprotection of compounds in vitro was detected by MTT, and the anti‐ischemic activity in vivo was tested using bilateral common carotid artery occlusion in mice. Most of these compounds showed potential neuroprotective effects against the glutamate‐induced cell death in differentiated rat pheochromocytoma cells (PC12 cells), especially for (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone, (4‐bromophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone, (4‐chlorophenyl)(1‐{2‐[(naphthalen‐2‐yl)oxy]ethyl}piperidin‐4‐yl)methanone, (4‐chlorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone and {1‐[2‐(4‐bromophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone, which exhibited potent protection of PC12 cells at three doses (0.1, 1.0, 10 μM). Compounds (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, (4‐fluorophenyl){1‐[2‐(naphthalen‐2‐yloxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone and {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone possessed the significant prolongation of the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all five doses tested (200, 100, 50, 25, 12.5 mg/kg) and had significant neuroprotective activity. In addition, (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone and {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone possessed outstanding neuroprotection in vitro and in vivo. These compounds can be used as a promising neuroprotective agents for future development of new anti‐ischemic stroke agents. Basic structure–activity relationships are also presented.  相似文献   
996.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
997.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
998.
Low electron/proton conductivities of electrochemical catalysts, especially earth‐abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple‐phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (≈0.1 mg cm?2) augments reaction sites from 1D to 2D, resulting in an 18‐fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar‐electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity‐determining and Debye‐length‐determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high‐efficiency electrochemical energy conversion devices.  相似文献   
999.
1000.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号