首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3912篇
  免费   230篇
  国内免费   4篇
  2023年   32篇
  2022年   58篇
  2021年   107篇
  2020年   77篇
  2019年   78篇
  2018年   102篇
  2017年   93篇
  2016年   127篇
  2015年   185篇
  2014年   182篇
  2013年   288篇
  2012年   279篇
  2011年   293篇
  2010年   194篇
  2009年   145篇
  2008年   179篇
  2007年   181篇
  2006年   169篇
  2005年   161篇
  2004年   114篇
  2003年   110篇
  2002年   103篇
  2001年   67篇
  2000年   49篇
  1999年   51篇
  1998年   26篇
  1997年   23篇
  1995年   21篇
  1994年   18篇
  1992年   31篇
  1991年   28篇
  1990年   29篇
  1989年   26篇
  1988年   28篇
  1987年   22篇
  1986年   24篇
  1985年   22篇
  1984年   37篇
  1983年   23篇
  1982年   28篇
  1981年   17篇
  1980年   16篇
  1979年   28篇
  1978年   17篇
  1977年   20篇
  1976年   20篇
  1975年   22篇
  1974年   17篇
  1973年   18篇
  1972年   20篇
排序方式: 共有4146条查询结果,搜索用时 109 毫秒
101.
Shoot tips, cotyledonary nodes and hypocotyls of chickpea (Cicer arietinum L.) were grown on 3 media: plant induction medium (PIM), callus induction medium (CIM), and shoot induction medium (SIM). Maximum growth and differentiation was seen in PIM, whereas minimum was observed in CIM. Shoot tips which differentiated to multiple shoots evolved negligible amounts of ethylene. Maximum ethylene evolution was recorded by hypocotyls in PIM. Ethylene appears to have stimulatory effect on shoot bud differentiation in cotyledonary nodes. But in hypocotyls, increased ethylene inhibited growth and differentiation. Calli on media containing only auxin (PIM) evolved significantly more ethylene, whereas those on media with cytokinin (SIM) evolved more methane. Callus forming explants like cotyledonary nodes and hypocotyls evolve more ethylene than shoot tips. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
102.
Abstract

In Anbetracht der weitreichenden Bedeutung des VIII. Internationalen Pflanzenschutzkongresses, der in der Zeit vom 22. bis 26. August 1975 in Moskau stattfand, hält es die Redaktion für erforderlich, die anläßlich des Kongresses verabschiedete Resolution im Wortlaut wiederzugeben.  相似文献   
103.
104.
Vibrio cholerae hemolysin (HlyA) is a 65?kDa pore-forming toxin which causes lysis of target eukaryotic cells by forming heptameric channels in the plasma membrane. Deletion of the 15?kDa C-terminus β-prism carbohydrate-binding domain generates a 50?kDa truncated variant (HlyA50) with 1000-fold-reduced pore-forming activity. Previously, we showed by cryo-electron microscopy that the two toxin oligomers have central channels, but the 65?kDa toxin oligomer is a seven-fold symmetric structure with bowl-, ring-, and arm-like domains, whereas the 50?kDa oligomer is an asymmetric jar-like heptamer. In the present study, we determined three-dimensional(3D) structures of HlyA and HlyA50 in presence of erythrocyte stroma and observed that interaction of the 65?kDa toxin with the stroma induced a significant decrease in the height of the β-barrel oligomer with a change in conformation of the ring- and arm-like domains of HlyA. These features were absent in interaction of HlyA50 with stroma. We propose that this conformational transition is critical for membrane-insertion of the toxin.  相似文献   
105.
Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.  相似文献   
106.
107.
Molecular Biology Reports - RUNX1T1 is extensively studied in the context of AML1-RUNX1T1 fusion protein in acute myeloid leukemia. Little is known about the function of RUNX1T1 itself, although...  相似文献   
108.

Sorghum is largely grown for food, fodder and for biofuel production in semi-arid regions where the drought or high temperature or their combination co-occur. Plant microRNAs (miRNAs) are integral to the gene regulatory networks that control almost all biological processes including adaptation to stress conditions. Thus far, plant miRNA profiles under separate drought or heat stresses have been reported but not under combined drought and heat. In this study, we report miRNA profiles in leaves of sorghum exposed to individual drought or heat or their combination. Approximately 29 conserved miRNA families represented by 80 individual miRNAs, 26 families represented by 47 members of less conserved or sorghum-specific miRNA families as well as 8 novel miRNA families have been identified. Of these, 25 miRNAs were found to be differentially regulated in response to stress treatments. The comparative profiling revealed that the miRNA regulation was stronger under heat or combination of heat and drought compared to the drought alone. Furthermore, using degradome sequencing, 48 genes were confirmed as targets for the miRNAs in sorghum. Overall, this study provides a framework for understanding of the miRNA-guided gene regulations under combined stresses.

  相似文献   
109.
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40–70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50–70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.  相似文献   
110.
Baculoviruses have enormous potential for use as biopesticides to control insect pest populations without the adverse environmental effects posed by the widespread use of chemical pesticides. However, continuous baculovirus production is susceptible to DNA mutation and the subsequent production of defective interfering particles (DIPs). The amount of DIPs produced and their genome length distribution are of great interest not only for baculoviruses but for many other DNA and RNA viruses. In this study, we elucidate this aspect of virus replication using baculovirus as an example system and both experimental and modeling studies. The existing mathematical models for the virus replication process consider DIPs as a lumped quantity and do not consider the genome length distribution of the DIPs. In this study, a detailed population balance model for the cell‐virus culture is presented, which predicts the genome length distribution of the DIP population along with their relative proportion. The model is simulated using the kinetic Monte Carlo algorithm, and the results agree well with the experimental results. Using this model, a practical strategy to maintain the DIP fraction to near to its maximum and minimum limits has been demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号