全文获取类型
收费全文 | 139篇 |
免费 | 8篇 |
国内免费 | 9篇 |
专业分类
156篇 |
出版年
2022年 | 2篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2015年 | 11篇 |
2014年 | 9篇 |
2013年 | 8篇 |
2012年 | 5篇 |
2011年 | 10篇 |
2010年 | 8篇 |
2009年 | 8篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 10篇 |
2005年 | 2篇 |
2004年 | 5篇 |
2003年 | 2篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 4篇 |
1995年 | 1篇 |
1994年 | 6篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1982年 | 2篇 |
1977年 | 2篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1971年 | 2篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1967年 | 3篇 |
1955年 | 1篇 |
1954年 | 2篇 |
1914年 | 1篇 |
1910年 | 1篇 |
排序方式: 共有156条查询结果,搜索用时 0 毫秒
61.
Tempo and mode of concerted evolution in the L1 repeat family of mice 总被引:10,自引:0,他引:10
Martin SL; Voliva CF; Hardies SC; Edgell MH; Hutchison CA d 《Molecular biology and evolution》1985,2(2):127-140
A 300-bp DNA sequence has been determined for 30 (10 from each of three
species of mice) random isolates of a subset of the long interspersed
repeat family L1. From these data we conclude that members of the L1 family
are evolving in concert at the DNA sequence level in Mus domesticus, Mus
caroli, and Mus platythrix. The mechanism responsible for this phenomenon
may be either duplicative transposition, gene conversion, or a combination
of the two. The amount of intraspecies divergence averages 4.4%, although
between species base substitutions accumulate at the rate of approximately
0.85%/Myr to a maximum divergence of 9.1% between M. platythrix and both M.
domesticus and M. caroli. Parsimony analysis reveals that the M. platythrix
L1 family has evolved into a distinct clade in the 10-12 Myr since M.
platythrix last shared a common ancestor with M. domesticus and M. caroli.
The parsimony tree also provides a means to derive the average half-life of
L1 sequences in the genome. The rates of gain and loss of individual copies
of L1 were estimated to be approximately equal, such that approximately
one-half of them turn over every 3.3 Myr.
相似文献
62.
将化学合成的单链猪胰岛素前体(PIP)基因和用聚合酶链反应得到的α交配因子前导顺序(αMFL)基因插入质粒pVT102-U的醇脱氢酶基因ADH1的启动子和3’终止顺序之间而生成质粒pVT102-U/αMFL-PIP.被pVT102-U/αMFL-PIP转化的酵母(Saccharomyces cerevistae)可表达单链前体并分泌到培养基中.前体在纯化后可通过胰蛋白酶的转肽作用转变成人胰岛素.纯化的人胰岛素具有全部活力并可结晶.人胰岛素的总收率为每升培养液25mg. 相似文献
63.
苎麻光合生理生态特性研究 总被引:1,自引:0,他引:1
以大田栽培的苎麻植株为材料,用TPS-2便携式光合作用测定系统测定自然条件下生长的苎麻叶片的光合气体交换参数,以及光响应曲线和CO2响应曲线,并通过回归和相关法分析探讨净光合速率与主要生理、生态因子间的关系.结果表明:(1)苎麻叶片的净光合速率(Pn)日变化曲线呈现双峰型,2个光合峰高度接近,其净光合速率具有典型的午休"现象;蒸腾速率(Tr)日变化曲线呈现单峰型,其走势与气孔导度(Gs)日变化一致.(2)苎麻叶片光合作用的光饱和点(LSP)为1 568.5μmol?m-2?s-1,光补偿点(LCP)为54.18μmol?m-2?s-1,表观量子效率(AQY)为0.025 8 mol?mol-1;而其CO2补偿点(CCP)、饱和点(CSP)和羧化效率(CE)分别为49.25、1 746.9μmol?mol-1和0.045;因此,苎麻属于喜光性阳生植物,且对强光有一定的耐受能力.(3)苎麻叶片Pn日变化的主要限制因子是胞间CO2浓度(Ci),主要决定生理因子是气孔导度(Gs). 相似文献
64.
65.
66.
JUAN ANTONIO DÍAZ‐PENDÓN M. CARMEN CAÑIZARES ENRIQUE MORIONES EDUARDO R. BEJARANO HENRYK CZOSNEK JESÚS NAVAS‐CASTILLO 《Molecular Plant Pathology》2010,11(4):441-450
Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. Taxonomy: The tomato yellow leaf curl virus‐like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full‐length DNA‐A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. Host range: The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petunia×hybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. Disease symptoms: Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance. 相似文献
67.
The evolution of animal and plant vascular systems played a pivotal role in the advancement from simple to complex organisms, through the provision of a delivery system for the distribution 相似文献
68.
玉米叶片生长部位渗透调节和生长的生物物理参数变化 总被引:6,自引:0,他引:6
玉米叶片生长部位随着水分胁迫加剧ψ_w降低、LER减慢。LER从最大到零,快速干旱处理的ψw从-0.55降至-0.85 MPa;缓慢干旱处理ψ_w从-0.88降至-1.13 MPa。在任何一种LER下,缓慢干旱处理的ψ_s比快速干旱处理更低,生长停止时,前者为-1.57 MPa,而后者为-1.30MPa。缓慢干旱叶片尽管在更低ψ_w下,仍能维持一定膨压,保持一定的生长速率。经历长时间水分胁迫会改变细胞延伸生长的生物物理参数,增大临界膨压(0.08~0.09 MPa)。这是水分胁迫植株,在一定ψ_p下生长速率减慢的原因。 相似文献
69.
70.
CA Istock JA Bell N Ferguson NL Istock 《Journal of industrial microbiology & biotechnology》1996,17(3-4):137-150
A discussion of the species problem in modern evolutionary biology serves as the point of departure for an exploration of how the basic science aspects of this problem relate to efforts to map bacterial diversity for practical pursuits—for prospecting among the bacteria for useful genes and gene-products. Out of a confusing array of species concepts, the Cohesion Species Concept seems the most appropriate and useful for analyzing bacterial diversity. Techniques of allozyme analysis and DNA fingerprinting can be used to put this concept into practice to map bacterial genetic diversity, though the concept requires minor modification to encompass cases of complete asexuality. Examples from studies of phenetically definedBacillus species provide very partial maps of genetic population structure. A major conclusion is that such maps frequently reveal deep genetic subdivision within the phenetically defined specles; divisions that in some cases are clearly distinct genetic species. Knowledge of such subdivisions is bound to make prospecting within bacterial diversity more effective. Under the general concept of genetic cohesion a hypothetical framework for thinking about the full range of species conditions that might exist among bacteria is developed and the consequences of each such model for species delineation, and species identification are discussed. Modes of bacterial evolution, and a theory of bacterial speciation with and without genetic recombination, are examined. The essay concludes with thoughts about prospects for very extensive mapping of bacterial diversity in the service of future efforts to find useful products. In this context, evolutionary biology becomes the handmaiden of important industrial activities. A few examples of past success in commercializing bacterial gene-products from species ofBacillus and a few other bacteria are reviewed. 相似文献