首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   7篇
  53篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1989年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
11.
12.

Background

Theoretical studies predict that it is not possible to eradicate a disease under voluntary vaccination because of the emergence of non-vaccinating “free-riders” when vaccination coverage increases. A central tenet of this approach is that human behaviour follows an economic model of rational choice. Yet, empirical studies reveal that vaccination decisions do not necessarily maximize individual self-interest. Here we investigate the dynamics of vaccination coverage using an approach that dispenses with payoff maximization and assumes that risk perception results from the interaction between epidemiology and cognitive biases.

Methods

We consider a behaviour-incidence model in which individuals perceive actual epidemiological risks as a function of their opinion of vaccination. As a result of confirmation bias, sceptical individuals (negative opinion) overestimate infection cost while pro-vaccines individuals (positive opinion) overestimate vaccination cost. We considered a feedback between individuals and their environment as individuals could change their opinion, and thus the way they perceive risks, as a function of both the epidemiology and the most common opinion in the population.

Results

For all parameter values investigated, the infection is never eradicated under voluntary vaccination. For moderately contagious diseases, oscillations in vaccination coverage emerge because individuals process epidemiological information differently depending on their opinion. Conformism does not generate oscillations but slows down the cultural response to epidemiological change.

Conclusion

Failure to eradicate vaccine preventable disease emerges from the model because of cognitive biases that maintain heterogeneity in how people perceive risks. Thus, assumptions of economic rationality and payoff maximization are not mandatory for predicting commonly observed dynamics of vaccination coverage. This model shows that alternative notions of rationality, such as that of ecological rationality whereby individuals use simple cognitive heuristics, offer promising new avenues for modelling vaccination behaviour.  相似文献   
13.
nessi is a computer program generating predictions about allelic and genotypic frequencies at the S-locus in sporophytic self-incompatibility systems under finite and infinite populations. For any pattern of dominance relationships among self-incompatibility alleles, nessi computes deterministic equilibrium frequencies and estimates distributions in samples from finite populations of the number of alleles at equilibrium, allelic and genotypic frequencies at equilibrium and allelic and genotypic frequency changes in a single generation. These predictions can be used to rigorously test the impact of negative frequency-dependent selection on diversity patterns in natural populations.  相似文献   
14.
15.
16.
17.
Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common genetic mechanism in angiosperm that enables hermaphrodite plants to avoid selfing and promote outcrossing. The SSI phenotype is determined by the S locus and may depend on dominance relationships among alleles. Since most individuals are heterozygous at the S locus and recombination is suppressed in the S-locus region, it has been suggested that deleterious mutations could accumulate at genes linked to the S locus, generating a “sheltered load.” In this article, we first theoretically investigate the conditions generating sheltered load in SSI. We show that deleterious mutations can accumulate in linkage with specific S alleles, and particularly if those S alleles are dominant. Second, we looked for the presence of sheltered load in Arabidopsis halleri using CO2 gas treatment to overcome self-incompatibility. By examining the segregation of S alleles and measuring the relative fitness of progeny, we found significant sheltered load associated with the most dominant S allele (S15) of three S alleles tested. This sheltered load seems to be expressed at several stages of the life cycle and to have a larger effect than genomic inbreeding depression.THE main genetic mechanism causing inbreeding depression is believed to be the expression of recessive mildly deleterious mutations in inbred individuals (Charlesworth and Charlesworth 1999). These deleterious mutations are generally supposed to be distributed throughout the genome. However, some genomic regions where loci under balancing selection are present may be more inclined than others to accumulate deleterious mutations and could lead to the formation of what is generally called a “sheltered load” (Uyenoyama 1997; van Oosterhout 2009). The sheltered load has been suggested as a potential reason why MHC genes, mating-type systems in fungi, and self-incompatibility systems in plants generally show longer terminal branches in their genealogies than expected (Richman 2000). Despite its potential importance, the extent of the sheltered load is still largely unknown.Homomorphic self-incompatibility is widely distributed among angiosperm families (de Nettancourt 2001; Igic et al. 2008). Self-incompatibility (SI) is controlled by genes under strong balancing selection. SI prevents self-fertilization and promotes outcrossing by the presence of a gamete recognition system involving proteins expressed in both the pollen and the pistil. The proteins controlling the recognition system are generally encoded by genes located in a single genomic region, the S locus. Each plant in a self-incompatible population expresses an S specificity and is unable to mate with other plants expressing the same specificity. In species with gametophytic self-incompatibility (GSI), the S specificity is controlled by interactions between protein expressed in the pollen''s haploid genome, the male gametophyte, and the pistil''s diploid genome. In species with sporophytic self-incompatibility (SSI), S specificity is controlled by interactions between gene products of the diploid sporophyte expressed on the pollen coat and those on the stigmatic surface. In this mating system, three reasons may facilitate the accumulation of recessive deleterious mutations in this region, namely a sheltered load (Uyenoyama 1997). First, high heterozygote frequencies are expected in populations at the S locus but also at other linked loci in the S-locus genomic region (Kamau et al. 2007). Second, negative frequency-dependent selection, a form of balancing selection, is the main selective force acting on the S locus and on linked genes (Castric and Vekemans 2004). Third, the recombination rate is low in the S-locus region (Casselman et al. 2000; Charlesworth et al. 2003). Such a sheltered load may have important evolutionary consequences for SI evolution: it can slow down the rate of emergence of new S alleles (Uyenoyama 2003), considerably extend the conditions for the persistence of GSI (Porcher and Lande 2005), and, finally, substantially increase the inbreeding depression in a small population (Glémin et al. 2001), which can have large consequences for endangered species and the viability of their populations.The magnitude of the sheltered load should depend on the size of the genomic region in which heterozygosity is enforced because of linkage to the S locus and also on the number of genes affecting fitness in that region. From an analysis of recombination rates in the S-locus genomic region in Arabidopsis lyrata, a species with SSI, Kawabe et al. (2006) suggested that the number of genes in the S-genomic region is probably not high enough for a large sheltered load to have an impact on fitness compared to the overall genomic load. Dowd et al. (2000) indeed found only 13 genes near the S locus in Petunia inflata. However, two studies have demonstrated the existence of transmission ratio distortion of some S alleles in A. lyrata (Bechsgaard et al. 2004; Leppala et al. 2008). The authors proposed that this could be indirect evidence of the existence of a sheltered load. To the best of our knowledge, the existence of sheltered load in SI species was specifically demonstrated so far only in Solanum carolinense, a species with GSI: Stone (2004) crossed individuals sharing alleles at the S locus, using bud pollination to overcome self-incompatibility. By looking at seed number and genotype of the progeny, a sheltered load linked to only two of seven S alleles investigated was detected. Direct evidence and estimations of the extent of the sheltered load are thus lacking.In SSI, complex dominance interactions among S alleles are usually observed [Ipomoea trifida (Kowyama et al. 1994), Brassica campestris (Hatakeyama et al. 1998), A. lyrata (Mable et al. 2003), and A. halleri (Llaurens et al. 2008a)]. The effect of these dominance interactions on the occurrence of a sheltered genetic load has not been investigated either theoretically or empirically, but may potentially be large. Indeed, recessive S alleles are expected to be more often homozygous in natural populations than dominant alleles (Schierup et al. 1997), and so may rapidly purge strongly deleterious recessive mutations, and thus should limit the sheltering effect. The sheltered load could thus differ depending on the dominance levels of the associated S alleles.In this study, we first investigated the theoretical conditions for the accumulation of a sheltered load in a SSI system, using stochastic simulations. Then, we empirically tested the existence and strength of an S-linked sheltered load in relation to dominance levels in SSI. We focused on A. halleri, a member of the Brassicaceae family. In this family, the S-locus region includes two major genes: SCR (also called SP-11), encoding a cysteine-rich protein of the pollen envelope, and SRK, encoding a receptor kinase located across the membrane of the papilla cells. High heterozygote frequencies at the S locus have been found in several species like B. insularis (Glémin et al. 2005) or A. lyrata (Schierup et al. 2006). The SRK and SCR genes are tightly linked, since they are located close to each other, and recombination suppression in the S-locus region has been suggested in several studies: in Brassica (Casselman et al. 2000) and in A. lyrata (Kamau and Charlesworth 2005; Kawabe et al. 2006). The conditions thus may be suitable for the existence of sheltered genetic load in A. halleri. We performed controlled pollinations in A. halleri to specifically measure the magnitude of the potential sheltered load of three S alleles with different dominance levels: a dominant, an intermediate, and a recessive allele. To evaluate the effect of the sheltered load on these crosses, we looked at the number of seeds produced, as well as at the development and the genotype at the S locus of the progeny.  相似文献   
18.
19.
No effect on cognitive function from daily mobile phone use   总被引:2,自引:0,他引:2  
The increasing use of mobiles phones (MP) has raised the problem of the effects of daily electromagnetic fields (EMF) exposure on human health. To date several studies have been published concerning the effects of acute MP exposure on psychomotor performances. This study investigated the effects of daily exposure to GSM 900 type MP on cognitive function. Fifty-five subjects (27 male and 28 female) were divided into two groups: a group with MP switched on and a group with MP switched off. The two groups were matched according to age, gender, and IQ. This double blind study lasted for 45 days and was divided in three periods: baseline (BLP, 2 days), exposure (EP, 27 days), and recovery (RP, 13 days). Subjects were exposed during EP and sham exposed during RP for 2 h/day, 5 days/week. The neuropsychological test battery composed of 22 tasks screened four neuropsychological categories: information processing, attention capacity, memory function, and executive function. This neuropsychological battery was performed four times on day 2 (BLP), day 15 (EP), day 29 (EP), and day 43 (RP). Our results indicate that daily MP use has no effect on cognitive function after a 13-h rest period.  相似文献   
20.
Recent theoretical advances have suggested that various forms of balancing selection may promote the evolution of dominance through an increase of the proportion of heterozygote genotypes. We test whether dominance can evolve in the sporophytic self-incompatibility (SSI) system in plants. SSI prevents mating between individuals expressing identical SI phenotypes by recognition of pollen by pistils, which avoids selfing and inbreeding depression. SI phenotypes depend on a complex network of dominance relationships between alleles at the self-incompatibility locus ( S -locus). Empirical studies suggest that these relationships are not random, but the exact evolutionary processes shaping these relationships remain unclear. We investigate the expected patterns of dominance under the hypothesis that dominance is a direct target of natural selection. We follow the fate of a mutant allele at the S -locus whose dominance relationships are changed but whose specificity remains unaltered. We show that strict codominance is not evolutionarily stable in SSI, and that inbreeding depression due to deleterious mutations linked or unlinked to the S -locus exerts strong constraints on changes in relative levels of dominance in pollen and pistil. Our results provide a general adaptive explanation for most patterns of dominance relationships empirically observed in natural plant populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号