全文获取类型
收费全文 | 106篇 |
免费 | 6篇 |
国内免费 | 1篇 |
专业分类
113篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 5篇 |
2014年 | 1篇 |
2013年 | 6篇 |
2012年 | 2篇 |
2011年 | 1篇 |
2010年 | 3篇 |
2009年 | 5篇 |
2008年 | 9篇 |
2007年 | 3篇 |
2006年 | 4篇 |
2005年 | 2篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有113条查询结果,搜索用时 6 毫秒
111.
Role of phospholipase in generating lipid second messengers in signal transduction 总被引:36,自引:0,他引:36
Many lipids or lipid-derived products generated by phospholipases acting on phospholipids in membranes are implicated as mediators and second messengers in signal transduction. Our current understanding of the primary sequence relationships within the class of extracellular phospholipase A2's and among the numerous forms of the mammalian phosphatidylinositol-specific phospholipase C's is reviewed. New results suggesting roles for these phospholipases as well as other phospholipases such as phospholipase C and D acting on phosphatidlycholine in generating arachidonic acid for eicosanoid biosynthesis, inositol phosphates for Ca2+ mobilization, and diglyceride for protein kinase C activation through receptor-mediated processes, are discussed. In addition, the possible role of phospholipases acting on sphingolipids such as sphinglomyelinase in generating lipid mediators is considered. 相似文献
112.
A detailed study has been made of the permeability characteristics of human erythrocyte ghosts prepared under isoionic conditions by a glycol-induced lysis (Billah, M.M., Finean, J.B., Coleman, R. and Michell, R.H. (1976) Biochim. Biophys. Acta 433, 45-54). Impermeability to large molecules such as dextran (average molecular weight 70 000) was restored immediately and spontaneously after each of the 5-7 lyses that were required to remove all of the haemoglobin. Permeabilities to smaller molecules such as MgATP2-, [3H]inositol and [14C]choline were initially high but could be greatly reduced by incubation at 37 degrees C for an hour. The extent of such resealing decreased as the number of lyses to which the ghosts had been subjected increased. Both removal of haemoglobin and permeabilities to small molecules were affected significantly by pH, CA3+ concentrations and divalent cation chelators. Maximum resealing was achieved in ghosts prepared in the basic ionic medium (130 mM KCl, 10 nM NaCl, 2 mM MgCl2, 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES)) at pH 7.0 (0 degrees C) and with a calcium level around 10(-5) M. Acidic pH facilitated the removal of haemoglobin whilst the presence of divalent cation chelators showed down its release. Retention of K+ by ghosts leaded with K+ during the first lysis and subsequently incubated at 37 degrees C was substantial but lation chelators slowed down its released. Retention of K+ by ghosts loaded with K+ during the first lysis and subsequently incubated at 37 degrees C was substantial but little K+ could be retained within the haemoglobin-free ghosts. Permeability of the ghosts to K+ after one lysis was affected by temperature, pH, Ca2+ concentrations and by the presence of divalent cation chelators. 相似文献
113.
Evidence for multiple metabolic pools of phosphatidylinositol in stimulated platelets 总被引:10,自引:0,他引:10
Stimulation of platelets with ionophore A23187 or thrombin indicates the existence of three distinct metabolic fractions of phosphatidylinositol. Two of those pools of phosphatidylinositol are degraded by phosphatidylinositol-specific phospholipase C and the third one by a phospholipase A2 activity. Low concentrations of ionophore A23187 (100 nM) or thrombin (0.25 units/ml) induce the degradation by phospholipase C of a minor fraction of phosphatidylinositol which is involved in the phosphatidylinositol cycle. In addition, thrombin, but not ionophore A23187, leads to the degradation by phospholipase C of a larger fraction of phosphatidylinositol and the subsequent accumulation of phosphatidic acid. A third fraction of phosphatidylinositol, sensitive to thrombin (0.5-2 units/ml) or ionophore A23187 (0.5-2 microM), can be degraded by phospholipase A2 to lysophosphatidylinositol with the concomitant liberation of arachidonic acid. Degradation of phosphatidylinositol by the phospholipase C pathway precedes that of the phospholipase A2 pathway. The results also suggest that the phosphatidylinositol cycle is sensitive to a small rise in cytosolic Ca2+ concentration. A further mobilization of cytosolic Ca2+ interrupts the phosphatidylinositol cycle by inhibiting conversion of phosphatidic acid to phosphatidylinositol and also activates phospholipases of the A2 type. 相似文献