首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1030篇
  免费   74篇
  国内免费   3篇
  2023年   5篇
  2022年   14篇
  2021年   17篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   8篇
  2016年   24篇
  2015年   51篇
  2014年   38篇
  2013年   54篇
  2012年   87篇
  2011年   81篇
  2010年   57篇
  2009年   34篇
  2008年   48篇
  2007年   58篇
  2006年   41篇
  2005年   54篇
  2004年   57篇
  2003年   54篇
  2002年   46篇
  2001年   20篇
  2000年   17篇
  1999年   11篇
  1998年   10篇
  1997年   13篇
  1996年   4篇
  1995年   13篇
  1994年   8篇
  1993年   8篇
  1992年   15篇
  1991年   13篇
  1990年   7篇
  1989年   11篇
  1988年   6篇
  1987年   12篇
  1986年   6篇
  1985年   12篇
  1984年   8篇
  1982年   4篇
  1981年   7篇
  1980年   7篇
  1977年   3篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   4篇
  1969年   4篇
  1968年   6篇
排序方式: 共有1107条查询结果,搜索用时 15 毫秒
111.
112.
113.
Bridges HR  Bill E  Hirst J 《Biochemistry》2012,51(1):149-158
In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires spectroscopic and structural data to be combined to reveal the properties of individual clusters and of the ensemble. EPR studies on complex I from Bos taurus have established that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster chain extending from the flavin) are (at least partially) reduced by NADH. The other three clusters, positions 4 and 6 plus a cluster on the other side of the flavin, are not observed in EPR spectra from the NADH-reduced enzyme: they may remain oxidized, have unusual or coupled spin states, or their EPR signals may be too fast relaxing. Here, we use M?ssbauer spectroscopy on (57)Fe-labeled complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and only the terminal 4Fe cluster (position 7) is fully reduced. Together with the EPR analyses, our results reveal an alternating profile of higher and lower potential clusters between the two active sites in complex I; they are not consistent with the consensus picture of a set of isopotential clusters. The implications for intramolecular electron transfer along the extended chain of cofactors in complex I are discussed.  相似文献   
114.
The fruit fly Drosophila melanogaster has become a model for olfaction and odour-mediated behaviour. In the wild, Drosophila flies aggregate on decaying fruit where they mate and oviposit and a strategy to find mates would be to locate fruit which has already been colonized by other flies. We therefore developed a bioassay to investigate attraction of males to food and fly odours. We showed that upwind flights are initiated by food odours. At shorter distances, males are attracted by volatiles produced by conspecifics. However, only odours produced by copulating flies attract males. This suggests either a synergistic effect of both male and female odours or changes in pheromone release during mating, that indicate the presence of sexually receptive females. Our findings demonstrate the essential role of food odours and pheromones for mate location in D. melanogaster.  相似文献   
115.
116.
The desert ant Cataglyphis fortis is equipped with sophisticated navigational skills for returning to its nest after foraging. The ant's primary means for long-distance navigation is path integration, which provides a continuous readout of the ant's approximate distance and direction from the nest. The nest is pinpointed with the aid of visual and olfactory landmarks. Similar landmark cues help ants locate familiar food sites. Ants on their outward trip will position themselves so that they can move upwind using odor cues to find food. Here we show that homing ants also move upwind along nest-derived odor plumes to approach their nest. The ants only respond to odor plumes if the state of their path integrator tells them that they are near the nest. This influence of path integration is important because we could experimentally provoke ants to follow odor plumes from a foreign, conspecific nest and enter that nest. We identified CO(2) as one nest-plume component that can by itself induce plume following in homing ants. Taken together, the results suggest that path-integration information enables ants to avoid entering the wrong nest, where they would inevitably be killed by resident ants.  相似文献   
117.
118.
African trypanosomes are the only organisms known to use RNA polymerase I (pol I) to transcribe protein-coding genes. These genes include VSG, which is essential for immune evasion and is transcribed from an extranucleolar expression site body (ESB). Several trypanosome pol I subunits vary compared to their homologues elsewhere, and the question arises as to how these variations relate to pol I function. A clear example is the N-terminal extension found on the second-largest subunit of pol I, RPA2. Here, we identify an essential role for this region. RPA2 truncation leads to nuclear exclusion and a growth defect which phenocopies single-allele knockout. The N terminus is not a general nuclear localization signal (NLS), however, and it fails to accumulate unrelated proteins in the nucleus. An ectopic NLS is sufficient to reinstate nuclear localization of truncated RPA2, but it does not restore function. Moreover, NLS-tagged, truncated RPA2 has a different subnuclear distribution to full-length protein and is unable to build stable pol I complexes. We conclude that the RPA2 N-terminal extension does not have a role exclusive to the expression of protein-coding genes, but it is essential for all pol I functions in trypanosomes because it directs trypanosomatid-specific interactions with RPA1.  相似文献   
119.
Balkenius A  Hansson B 《PloS one》2012,7(4):e32133

Background

The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.

Methodology/Principal Findings

Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.

Conclusions

Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号