Tissue transglutaminase (tTG) has been implicated in the pathogenesis of
Parkinson disease (PD). However, exactly how tTG modulates the structural and
functional properties of α-synuclein (α-syn) and contributes to
the pathogenesis of PD remains unknown. Using site-directed mutagenesis
combined with detailed biophysical and mass spectrometry analyses, we sought
to identify the exact residues involved in tTG-catalyzed cross-linking of
wild-type α-syn and α-syn mutants associated with PD. To better
understand the structural consequences of each cross-linking reaction, we
determined the effect of tTG-catalyzed cross-linking on the oligomerization,
fibrillization, and membrane binding of α-syn
in vitro. Our
findings show that tTG-catalyzed cross-linking of monomeric α-syn
involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed
cross-linked monomeric α-syn composed of either wild-type or Gln →
Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping
by mass spectrometry. Using this approach, we identified the glutamine and
lysine residues involved in tTG-catalyzed intramolecular cross-linking of
α-syn. These studies demonstrate for the first time that
Gln
79 and Gln
109 serve as the primary tTG reactive
sites. Mutating both residues to asparagine abolishes tTG-catalyzed
cross-linking of α-syn and tTG-induced inhibition of α-syn
fibrillization
in vitro. To further elucidate the sequence and
structural basis underlying these effects, we identified the lysine residues
that form isopeptide bonds with Gln
79 and Gln
109. This
study provides mechanistic insight into the sequence and structural basis of
the inhibitory effects of tTG on α-syn fibrillogenesis
in vivo,
and it sheds light on the potential role of tTG cross-linking on modulating
the physiological and pathogenic properties of α-syn.Parkinson disease
(PD)
2 is a progressive
movement disorder that is caused by the loss of dopaminergic neurons in the
substantia nigra, the part of the brain responsible for controlling movement.
Clinically, PD is manifested in symptoms that include tremors, rigidity, and
difficulty in initiating movement (bradykinesia). Pathologically, PD is
characterized by the presence of intraneuronal, cytoplasmic inclusions known
as Lewy bodies (LB), which are composed primarily of the protein
“α-synuclein” (α-syn)
(
1) and are seen in the
post-mortem brains of PD patients with the sporadic or familial forms of the
disease (
2). α-Syn is a
presynaptic protein of 140 residues with a “natively” unfolded
structure (
3). Three missense
point mutations in α-syn (A30P, E46K, and A53T) are associated with the
early-onset, dominant, inherited form of PD
(
4,
5). Moreover, duplication or
triplication of the α-
syn gene has been linked to the familial
form of PD, suggesting that an increase in α-syn expression is
sufficient to cause PD. Together, these findings suggest that α-syn
plays a central role in the pathogenesis of PD.The molecular and cellular determinants that govern α-syn
oligomerization and fibrillogenesis
in vivo remain poorly understood.
In vitro aggregation studies have shown that the mutations associated
with PD (A30P, E46K, and A53T) accelerate α-syn oligomerization, but
only E46K and A53T α-syn show higher propensity to fibrillize than
wild-type (WT) α-syn
(
6-
8).
This suggests that oligomerization, rather than fibrillization, is linked to
early-onset familial PD (
9).
Our understanding of the molecular composition and biochemical state of
α-syn in LBs has provided important clues about protein-protein
interactions and post-translational modifications that may play a role in
modulating oligomerization, fibrillogenesis, and LB formation of the protein.
In addition to ubiquitination
(
10), phosphorylation
(
11,
12), nitration
(
13,
14), and C-terminal truncation
(
15,
16), analysis of post-mortem
brain tissues from PD and Lewy bodies in dementia patients has confirmed the
colocalization of tissue transglutaminase (tTG)-catalyzed cross-linked
α-syn monomers and higher molecular aggregates in LBs within
dopaminergic neurons (
17,
18). Tissue transglutaminase
catalyzes a calcium-dependent transamidating reaction involving glutamine and
lysine residues, which results in the formation of a covalent cross-link via
ε-(γ-glutamyl) lysine bonds
(). To date,
seven different isoforms of tTGs have been reported, of which only tTG2 seems
to be expressed in the human brain
(
19), whereas tTG1 and tTG3
are more abundantly found in stratified squamous epithelia
(
20). Subsequent
immuno-histochemical, colocalization, and immunoprecipitation studies have
shown that the levels of tTG and cross-linked α-syn species are
increased in the substantia nigra of PD brains
(
17). These findings, combined
with the known role of tTG in cross-linking and stabilizing bimolecular
assemblies, led to the hypothesis that tTG plays an important role in the
initiation and propagation of α-syn fibril formation and that it
contributes to fibril stability in LBs. This hypothesis was initially
supported by
in vitro studies demonstrating that tTG catalyzes the
polymerization of the α-syn-derived non-amyloid component (NAC) peptide
via intermolecular covalent cross-linking of residues Gln
79 and
Lys
80 (
21) and by
other studies suggesting that tTG promotes the fibrillization of amyloidogenic
proteins implicated in the pathogenesis of other neurodegenerative diseases
such as Alzheimer disease, supranuclear palsy, Huntington disease, and other
polyglutamine diseases
(
22-
24).
However, recent
in vitro studies with full-length α-syn have
shown that tTG catalyzes intramolecular cross-linking of monomeric α-syn
and inhibits, rather than promotes, its fibrillization
in vitro
(
25,
26). The structural basis of
this inhibitory effect and the exact residues involved in tTG-mediated
cross-linking of α-syn, as well as structural and functional
consequences of these modifications, remain poorly understood.
Open in a separate windowtTG-catalyzed cross-linking of α-syn involves one to three
intramolecular cross-links.
A-C, MALDI-TOF/TOF analysis of native
(—) and cross-linked (- - -) α-syn, showing that most
tTG-catalyzed cross-linking products of WT or disease-associated mutant forms
of α-syn are intramolecularly linked (predominant peak with two
cross-links), and up to three intramolecular cross-links can occur (
left
shoulder). The abbreviations
M and
m/
cl are
used to designate native and cross-linked α-synuclein, respectively.
D and
E, kinetic analysis of α-syn (A30P)
cross-linking monitored by MALDI-TOF and SDS-PAGE.
F, schematic
depiction of the tTG-catalyzed chemical reaction (isodipeptide formation)
between glutamine and lysine residues.In this study, we have identified the primary glutamine and lysine residues
involved in tTG-catalyzed, intramolecularly cross-linked monomeric α-syn
and investigated how cross-linking these residues affects the oligomerization,
fibrillization, and membrane binding of α-syn
in vitro. Using
single-site mutagenesis and mass spectrometry applied to exhaustive
proteolytic digests of native and cross-linked monomeric α-syn, we
identified Gln
109 and Gln
79 as the major tTG substrates.
We demonstrate that the altered electrophoretic mobility of the
intramolecularly cross-linked α-syn in SDS-PAGE occurs as a result of
tTG-catalyzed cross-linking of Gln
109 to lysine residues in the N
terminus of α-syn, which leads to the formation of more compact
monomers. Consistent with previous studies, we show that intramolecularly
cross-linked α-syn forms off-pathway oligomers that are distinct from
those formed by the wild-type protein and that do not convert to fibrils
within the time scale of our experiments (3-5 days). We also show that
membrane-bound α-syn is a substrate of tTG and that intramolecular
cross-linking does not interfere with the ability of monomeric α-syn to
adopt an α-helical conformation upon binding to synthetic membranes.
These studies provide novel mechanistic insight into the sequence and
structural basis of events that allow tTG to inhibit α-syn
fibrillogenesis, and they shed light on the potential role of tTG-catalyzed
cross-linking in modulating the physiological and pathogenic properties of
α-syn.
相似文献