首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   50篇
  694篇
  2023年   4篇
  2022年   5篇
  2021年   18篇
  2020年   11篇
  2019年   6篇
  2018年   17篇
  2017年   19篇
  2016年   20篇
  2015年   24篇
  2014年   29篇
  2013年   32篇
  2012年   35篇
  2011年   39篇
  2010年   28篇
  2009年   27篇
  2008年   30篇
  2007年   30篇
  2006年   34篇
  2005年   23篇
  2004年   21篇
  2003年   23篇
  2002年   25篇
  2001年   14篇
  2000年   21篇
  1999年   14篇
  1998年   4篇
  1997年   6篇
  1995年   5篇
  1994年   9篇
  1992年   7篇
  1991年   5篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1971年   4篇
  1969年   4篇
  1968年   6篇
  1965年   3篇
排序方式: 共有694条查询结果,搜索用时 0 毫秒
41.
Cyclin-dependent kinase 5 (CDK5), unlike other CDKs, is active only in neuronal cells where its neuron-specific activator p35 is present. However, it phosphorylates serines/threonines in S/TPXK/R-type motifs like other CDKs. The tail portion of neurofilament-H contains more than 50 KSP repeats, and CDK5 has been shown to phosphorylate S/T specifically only in KS/TPXK motifs, indicating highly specific interactions in substrate recognition. CDKs have been shown to have a high preference for a basic residue (lysine or arginine) as the n+3 residue, n being the location in the primary sequence of a phosphoacceptor serine or threonine. Because of the lack of a crystal structure of a CDK-substrate complex, the structural basis for this specific interaction is unknown. We have used site-directed mutagenesis ("charged to alanine") and molecular modeling techniques to probe the recognition interactions for substrate peptide (PKTPKKAKKL) derived from histone H1 docked in the active site of CDK5. The experimental data and computer simulations suggest that Asp86 and Asp91 are key residues that interact with the lysines at positions n+2 and/or n+3 of the substrates.  相似文献   
42.
An elaborated model of fly small-target tracking   总被引:1,自引:0,他引:1  
Flies have the capability to visually track small moving targets, even across cluttered backgrounds. Previous computational models, based on figure detection (FD) cells identified in the fly, have suggested how this may be accomplished at a neuronal level based on information about relative motion between the target and the background. We experimented with the use of this small-field system model for the tracking of small moving targets by a simulated fly in a cluttered environment and discovered some functional limitations. As a result of these experiments, we propose elaborations of the original small-field system model to support stronger effects of background motion on small-field responses, proper accounting for more complex optical flow fields, and more direct guidance toward the target. We show that the elaborated model achieves much better tracking performance than the original model in complex visual environments and discuss the biological implications of our elaborations. The elaborated model may help to explain recent electrophysiological data on FD cells that seem to contradict the original model.Acknowledgement This work was supported by the US Office of Naval Research under agreement number N68936-00-2-0002.  相似文献   
43.
Neuronal transmission of information requires polarized distribution of membrane proteins within axonal compartments. Membrane proteins are synthesized and packaged in membrane-bounded organelles (MBOs) in neuronal cell bodies and later transported to axons by microtubule-dependent motor proteins. Molecular mechanisms underlying targeted delivery of MBOs to discrete axonal subdomains (i.e. nodes of Ranvier or presynaptic terminals) are poorly understood, but regulatory pathways for microtubule motors may be an essential step. In this work, pharmacological, biochemical and in vivo experiments define a novel regulatory pathway for kinesin-driven motility in axons. This pathway involves enzymatic activities of cyclin-dependent kinase 5 (CDK5), protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK3). Inhibition of CDK5 activity in axons leads to activation of GSK3 by PP1, phosphorylation of kinesin light chains by GSK3 and detachment of kinesin from transported cargoes. We propose that regulating the activity and localization of components in this pathway allows nerve cells to target organelle delivery to specific subcellular compartments. Implications of these findings for pathogenesis of neurodegenerative diseases such as Alzheimer's disease are discussed.  相似文献   
44.
Birds in V formations are frequently observed and two main hypotheses have emerged to explain this particular geometry: (i) it offers aerodynamic advantages and (ii) it is used to improve visual communication. Both explanations require a bird to track its predecessor. However, most V-formations observed in nature are small and the distribution of wing-tip spacings has a large variation. This suggests that tracking the lateral position of the preceding bird is a difficult task. Control theorists, when trying to control platoons of vehicles, also noted that predecessor following is difficult. In this paper, we apply a result from systems theory to explain the observations of bird V-formations. The strength of this result is that it does not rely on the details of the bird flight model. Thus we claim that formation flight is inherently difficult for birds.  相似文献   
45.
The microtubule-associated protein tau is a developmentally regulated neuronal phosphoprotein. The phosphorylation of tau reduces its ability to bind and stabilize axonal microtubules during axonal growth. Although tau is phosphorylated by cyclin-dependent kinase 5 (Cdk5) in vitro, its in vivo roles remain unclear. Here, we show that tau is phosphorylated by Cdk5/p39 during brain development, resulting in a reduction of its affinity for microtubules. The activity of Cdk5 is tightly regulated by association with its neuronal activators, p35 or p39. The p35 and p39 expression levels were investigated in the developing mouse brain; the p39 expression level was higher in embryonic hind brain and spinal cord and in postnatal cerebral cortex, whereas that of p35 was most prominent in cerebral cortex at earlier stages of development. The ability of Cdk5 to phosphorylate tau was higher when in association with p39 than in association with p35. Tau phosphorylation at Ser-202 and Thr-205 was decreased in Cdk5-/- mouse brain but not in p35-/- mouse brain, suggesting that Cdk5/p39 is responsible for the in vivo phosphorylation of tau at these sites. Our data suggest that tau phosphorylation by Cdk5 may provide the neuronal microtubules with dynamic properties in a region-specific and developmentally regulated manner.  相似文献   
46.
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays an important role in mediating survival signals in wide variety of neurons and cells. Recent studies show that Akt also regulates metabolic pathways to regulate cell survival. In this study, we reported that cyclin-dependent kinase-5 (Cdk5) regulates Akt activity and cell survival through the neuregulin-mediated PI 3-kinase signaling pathway. We found that brain extracts of Cdk5-/-mice display a lower PI 3-kinase activity and phosphorylation of Akt compared with that in wild type mice. Moreover, we demonstrated that Cdk5 phosphorylated Ser-1176 in the neuregulin receptor ErbB2 and phosphorylated Thr-871 and Ser-1120 in the ErbB3 receptor. We identified the Ser-1120 sequence RSRSPR in ErbB3 as a novel phosphorylation consensus sequence of Cdk5. Finally, we found that Cdk5 activity is involved in neuregulin-induced Akt activity and neuregulin-mediated neuronal survival. These findings suggest that Cdk5 may exert a key role in promoting neuronal survival by regulating Akt activity through the neuregulin/PI 3-kinase signaling pathway.  相似文献   
47.
Decreased phosphorylation of neurofilaments in mice lacking myelin-associated glycoprotein (MAG) was shown to be associated with decreased activities of extracellular-signal regulated kinases (ERK1/2) and cyclin-dependent kinase-5 (cdk5). These in vivo changes could be caused directly by the absence of a MAG-mediated signaling pathway or secondary to a general disruption of the Schwann cell-axon junction that prevents signaling by other molecules. Therefore, in vitro experimental paradigms of MAG interaction with neurons were used to determine if MAG directly influences expression and phosphorylation of cytoskeletal proteins and their associated kinases. COS-7 cells stably transfected with MAG or with empty vector were co-cultured with primary dorsal root ganglion (DRG) neurons. Total amounts of the middle molecular weight neurofilament subunit (NF-M), microtubule-associated protein 1B (MAP1B), MAP2, and tau were up-regulated significantly in DRG neurons in the presence of MAG. There was also increased expression of phosphorylated high molecular weight neurofilament subunit (NF-H), NF-M, and MAP1B. Additionally, in similar in vitro paradigms, total and phosphorylated NF-M were increased significantly in PC12 neurons co-cultured with MAG-expressing COS cells or treated with a soluble MAG Fc-chimera. The increased expression of phosphorylated cytoskeletal proteins in the presence of MAG in vitro was associated with increased activities of ERK 1/2 and cdk5. We propose that interaction of MAG with an axonal receptor(s) induces a signal transduction cascade that regulates expression of cytoskeletal proteins and their phosphorylation by these proline-directed protein kinases.  相似文献   
48.
A series of acyclic deoxy carbohydrate derivatives from easily available carbohydrate enals 1, 2, 3 or 5 were prepared involving the Baylis-Hillman reaction. These newly formed carbohydrate based Baylis-Hillman adducts and their amino derivatives were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis H(37)R(v). Among the compounds evaluated for their antimycobacterial activity, compound (10) showed the desired activity in the range of 3.125 microg/mL.  相似文献   
49.
The objectives of this study were to determine the relationship of age and body weight to testicular development and to establish norms for breeding soundness evaluations of Murrah buffalo bulls. Testicular measurements of 133 Murrah buffalo bulls of various ages were recorded with a caliper and a tape. Semen was collected twice a week for 5 weeks from groups of bulls which were 25-36 (n=17), 37-48 (n=16), 49-60 (n=14), of >60 (n=10) months of age. After examining volume, sperm concentration, and progressive motility semen was diluted in Tris-citric acid-egg yolk-fructose extender and frozen in 0.5 ml French straws. Testicular measurements of buffalo bulls were lower than those recorded for European breeds of cattle bulls. Nevertheless, like cattle bulls, scrotal circumference was highly correlated with other testicular measurements. Also, it had a significant positive relationship with semen volume and sperm concentration per ejaculate. Average sperm output per week in order of increasing age group was 15.3, 18.2, 19.8 and 23.6 x 10(9). Corresponding values for sperm output per week per gram of testis were 59.1, 45.8, 41.1, 36.2 x 10(6) indicating a reduction in spermatogenesis per unit of testis with advancing age. Compared to European breeds, daily sperm output in Murrah bulls was nearly 45% lower, presumably due to their nearly 40% lower scrotal circumference than Holstein bulls of the same age. These results indicate that in buffalo, as in cattle, scrotal circumference is a useful indicator of potential sperm output and may serve as an important criterion for selecting young bulls as AI sires.  相似文献   
50.
Allopolyploidy alters gene expression in the highly stable hexaploid wheat   总被引:32,自引:0,他引:32  
Hexaploid wheat (Triticum aestivum) contains triplicated genomes derived from three distinct species. To better understand how different genomes are coordinated in the same nucleus of the hexaploid wheat, we globally compared gene expression of a synthetic hexaploid wheat with its diploid (Aegilops tauschii) and tetraploid (T. turgidum) parents by cDNA-AFLP display. The results suggested that the expression of a significant fraction of genes was altered in the synthetic hexaploid; most appeared to be diminished and some were activated. We characterized nine cDNA clones in details. Cytogenetic as well as genomic sequence analyses indicated that the gene silencing was not due to chromosome/DNA loss but was caused by gene regulation. Northern and RT-PCR divided these genes into three groups: (I) four genes were down-regulated nonspecifically, likely involving both parental orthologues; (II) four genes were down-regulated in an orthologue-dependent manner; (III) one gene was activated specifically in the synthetic hexaploid wheat. These genes were often altered non-randomly in different synthetic hexaploids as well as natural hexaploid wheat, suggesting that many of the gene expression changes were intrinsically associated with polyploidy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号