首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2659篇
  免费   135篇
  国内免费   3篇
  2797篇
  2023年   21篇
  2022年   38篇
  2021年   78篇
  2020年   50篇
  2019年   54篇
  2018年   69篇
  2017年   69篇
  2016年   87篇
  2015年   137篇
  2014年   112篇
  2013年   200篇
  2012年   194篇
  2011年   195篇
  2010年   134篇
  2009年   98篇
  2008年   125篇
  2007年   132篇
  2006年   122篇
  2005年   107篇
  2004年   79篇
  2003年   77篇
  2002年   72篇
  2001年   38篇
  2000年   28篇
  1999年   30篇
  1998年   14篇
  1997年   18篇
  1995年   15篇
  1992年   14篇
  1991年   19篇
  1990年   19篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   22篇
  1983年   16篇
  1982年   19篇
  1981年   12篇
  1979年   14篇
  1977年   13篇
  1976年   13篇
  1975年   14篇
  1974年   12篇
  1972年   14篇
  1971年   11篇
  1968年   11篇
  1967年   11篇
  1966年   10篇
排序方式: 共有2797条查询结果,搜索用时 11 毫秒
31.
Rifampin and chloramphenicol inhibited the synthesis of collagenase of Streptomyces sp. A8, suggesting de novo synthesis. The collagenase was induced by insoluble collagen, its macromolecular fragments, gelatin, peptone, hide powder and yeast extract. Growth as well as collagenase synthesis were dependent on substrate availability. Purification of collagenase by DEAE-cellulose chromatography resulted in approximately 25-fold increase in activity (268.6 μmol glycine equivalents min?1 mg?1 protein) relative to the activity of the culture filtrate (10.5 μmol glycine equivalents min?1 mg?1 protein).  相似文献   
32.
Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I.  相似文献   
33.
A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l−1) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l−1) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0–6.5) and the pyrolysis temperature was found to be at 116.73 °C with an enthalpy (ΔH) of 1330.72 Jg−1. MALDI TOF mass spectrometric result suggests that polymer contained Hex5Pent3 as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.  相似文献   
34.
35.
A novel noninvasive genomic DNA isolation protocol from fecal tissue, by the proteinase K digestion and guanidine hydrochloride extraction method, was assessed for the genotyping of cattle and buffalo. The epithelial tissues present on the surface of the feces were used as source for isolation of genomic DNA. The DNA isolated from fecal tissue was found to be similar as those obtained from other body tissues such as skin, brain, liver, kidney, and muscle. The quality of DNA was checked by agarose gel electrophoresis and polymerase chain reaction (PCR). We successfully amplified a 320 bp MHC class II DRB gene and a 125 bp mt-DNA D-loop region from isolated genomic DNA of cattle. Thus, the DNA isolated using this method was suitable for common molecular biology methods, such as restriction enzyme digestion and genotyping of dairy animals through PCR.  相似文献   
36.
Bansal R  Acharya PC 《Steroids》2012,77(5):552-557
In order to determine the structural requirements for cytotoxicity against various tumor cell lines, a new series of 16E-arylidene androstene amides with varying degrees of unsaturation in ring A has been synthesized. Characterization and invitro cytotoxic studies of the newly synthesized compounds are discussed. The compounds on evaluation against various tumor cell lines exhibited significant growth inhibition on leukemia cell lines. 3-Chloro-16E-{[4-(4-methylpiperazin-1-yl)-2-oxoethoxy]benzylidene}androst-5-en-17-one (10) emerged as the most potent compound of the series with GI(50) values of 3.94, 2.61, 6.90 and 1.79μM against CCRF-CEM, K-562, RPMI-8226 and SR leukemia cell lines, respectively.  相似文献   
37.
38.
Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca2+ homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61–83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection.  相似文献   
39.
Aggregation of Amyloid β (Aβ) in the interneuronal spaces is a major etiopathological factor for onset and progression of Alzheimer’s disease (AD). Since the mechanism of aggregation is not fully understood, control and modulation of the aggregation process is a challenging task. Although, several strategies were developed for the past few decades, yet there is no proper therapeutics available. Herein, we report a peptide based pro-drug, termed as a conformational Pro-Drug peptide (PDp), which disrupts existing Aβ fibrils, but does not produce toxic soluble oligomers, through a series of spontaneous chemical reactions resulting in in situ generation of β-sheet destabilizing factors. Furthermore, PDp reduces Aβ mediated toxicity examined on an in vitro model consisting of the human neuroblastoma SH-SY5Y cells. PDp also disrupts fibrils originated from AD affected human cerebrospinal fluid. These findings will help to understand the process of amyloidogenesis better and also indicate a novel approach for therapeutically important peptide design.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号