首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   21篇
  2023年   3篇
  2022年   5篇
  2021年   16篇
  2020年   3篇
  2019年   5篇
  2018年   16篇
  2017年   5篇
  2016年   16篇
  2015年   16篇
  2014年   23篇
  2013年   17篇
  2012年   33篇
  2011年   27篇
  2010年   17篇
  2009年   13篇
  2008年   26篇
  2007年   11篇
  2006年   16篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
61.
62.
63.
A metagenomic approach was used to investigate how the microbial community composition changes when an anammox-based granular sludge reactor is seeded with nitritation-anammox biomass from a wastewater treatment plant. In the seed sample, the abundance of Candidatus Kuenenia stuttgartiensis was similar to Candidatus Jettenia caeni (12.63 vs. 11.68%). This biomass was typical in terms of microbial nitrogen conversion; both ammonia (Nitrosomonas sp.) and nitrite (Nitrospira sp.) oxidizing bacteria were detected. In the lab-scale reactor, Candidatus Kuenenia stuttgartiensis and Candidatus Jettenia caeni bacteria were also present in equal proportions (18.57 vs. 20.89%). On the contrary, Candidatus Nitrospira defluvii bacteria were highly abundant in this reactor, but no known ammonia-oxidizing bacteria were detected. In light of recent studies showing that Nitrospira sp. are capable of complete nitrification, the results presented here may well indicate that both stages of nitrification in the anammox-based granular sludge reactor were performed by this bacteria.  相似文献   
64.
Alnus glutinosa (black alder) is a mycorrhizal pioneer tree species with tolerance to high concentrations of salt in the soil and can therefore be considered to be an important tree for the regeneration of forests areas devastated by excessive salt. However, there is still a lack of information about the ectomycorrhizal fungi (EMF) associated with mature individuals of A. glutinosa growing in natural saline conditions. The main objective of this study was to test the effect of soil salinity and other physicochemical parameters on root tips colonized by EMF, as well as on the species richness and diversity of an EMF community associated with A. glutinosa growing in natural conditions. We identified a significant effect of soil salinity (expressed as electrical conductivity: ECe and EC1:5) on fungal taxa but not on the total level of EM fungal colonization on roots. Increasing soil salinity promoted dark-coloured EMF belonging to the order Thelephorales (Tomentella sp. and Thelephora sp.). These fungi are also commonly found in soils polluted with heavy-metal. The ability of these fungi to grow in contaminated soil may be due to the presence of melanine, a natural dark pigment and common wall component of the Thelephoraceae that is known to act as a protective interface between fungal metabolism and biotic and abiotic environmental stressors. Moreover, increased colonization of fungi belonging to the class of Leotiomycetes and Sordiomycetes, known as endophytic fungal species, was observed at the test sites, that contained a larger content of total phosphorus. This observation confirms the ability of commonly known endophytic fungi to form ectomycorrhizal structures on the roots of A. glutinosa under saline stress conditions.  相似文献   
65.
66.
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号