首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   4篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   4篇
  1968年   4篇
  1967年   2篇
  1966年   4篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
31.
32.
The substrate binding site of an acidic endo-1,4-beta-xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) of Aspergillus niger was investigated using 1,4-beta-xylooligosaccharides (1-3H)-labelled at the reducing end. Bond cleavage frequencies and V/Km parameters of the oligosaccharides were determined under conditions of unimolecular hydrolysis and, according to the method of Suganuma et al. (J. Biochem. (Tokyo) (1978) 84, 293-316), used for evaluation of subsite affinities. The substrate binding site of the enzyme was found to consist of seven subsites, numbered -IV, -III, -II, -I, I, II and III, towards the subsite binding the reducing end unit of xyloheptaose. The catalytic groups were localized between subsites -I and I, the affinities of which have not been determined. All other subsites showed positive values of affinities for binding xylosyl residues. The values decrease from subsites -II and II, similarly in both directions. As a consequence of such an almost symmetric distribution of affinities around the catalytic groups, the enzyme cleaves preferentially the bonds in the oligosaccharides which are most distant from both terminals. Thus, the acidic A. niger beta-xylanase appears to be an endo-1,4-beta-xylanase attacking polymeric substrates in a random fashion. This conclusion was supported by viscosimetric measurements with carboxymethylxylan as a substrate.  相似文献   
33.
Bacterium Arthrobacter GJM-1 known in the literature as a good producer of alpha-mannanase was found to accumulate in the culture fluid lytic activities against viable yeast cells during growth on isolated cell walls or beta-glucan fractions of yeast. The accumulation of the lytic activities showed an inducible character. The lytic system produced in the medium containing baker's yeast cell walls was capable of complete solubiliaztion of cell wals in vitro. The system lysed viable cells of a number of yeast species and induced their conversion to protoplasts in an osmotically stabilized medium. The lytic system showed different pH and temperature optima when viable cells or isolated cell walls were used as substrates. The pH optimum of the lysis of isolated cell walls was identical with pH optimum of beta-glucanase activities in the crude system. The results pointed out that in the lysis of intact cells, in addition to beta-glucanases, some other factor is involved. Substantial differences in the nature of the outer and the inner surface of cell walls of Saccharomuces cerevisiae were confirmed in this paper based on the different susceptibility to lysis of the cell walls in vivo and in vitro.  相似文献   
34.
To be utilized in biomass conversion, including ethanol production and galactosylated oligosaccharide synthesis, namely prebiotics, the gene of extracellular endo‐β‐1,4‐mannanase (EC 3.2.1.78) of Aspergillus fumigatus IMI 385708 (formerly known as Thermomyces lanuginosus IMI 158749) was expressed first in Aspergillus sojae and then in Pichia pastoris under the control of the glyceraldehyde triphosphate dehydrogenase (gpdA ) and the alcohol oxidase (AOX1 ) promoters, respectively. The highest production of mannanase (352 U mL?1) in A. sojae was observed after 6 days of cultivation. In P. pastoris, the highest mannanase production was observed 10 h after induction with methanol (61 U mL?1). The fold increase in mannanase production was estimated as ~12‐fold and ~2‐fold in A. sojae and P. pastoris, respectively, when compared with A. fumigatus. Both recombinant enzymes showed molecular mass of about 60 kDa and similar specific activities (~350 U mg?1 protein). Temperature optima were at 60°C and 45°C, and maximum activity was at pH 4.5 and 5.2 for A. sojae and P. pastoris, respectively. The enzyme from P. pastoris was more stable retaining most of the activity up to 50°C, whereas the enzyme from A. sojae rapidly lost activity above 40°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
35.
Alpha-glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4-O-methyl-D-glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4-O-methyl-D-glucuronosyl-alpha-1,2-D-xylopyranosyl-beta-1,4-xylopyranosyl-beta-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D(2)O reaction mixture by (1)H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its beta-anomer from which the alpha-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial alpha-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).  相似文献   
36.
Cryptococcus albidus grown on wood xylans possesses a soluble intracellular β-xylosidase (EC 3.2.1.37) as an additional constituent of the xylan-degrading enzyme system of this yeast. The enzyme attacks linear 1,4-β-xylooligosaccharides in an exo-fashion, liberating xylose from the non-reducing ends. The activity of the enzyme increases in the cells during growth on xylan and incubation with xylobiose or methyl β-D-xylopyranoside which are the best inducers of extracellular β-xylanase (EC 3.2.1.8). Various alkyl-, alkyl-1-thio- and aryl β-D-xylopyranosides were excellent of a different β-xylosidase of Cryptococcus albidus. This enzyme is localized outside the plasma membrane and is principally associated with cell walls. Unlike the soluble intracellular β-xylosidase, the wall-bound enzyme does not hydrolyze xylooligosaccharides. Evidence has been obtained that β-xylosidase activity in the cell walls is not due to the presence of a specific aryl β-xylosidase, but is exhibited by a nonspecific β-glucosidase (EC 3.2.1.21) inducible by β-D-xylopyranosides. The ratio of β-glucosidase and β-xylosidase activity in the cells and isolated cell walls from yeast induced by various β-xylopyranosides and β-glucopyranosides was very similar. Both wall-bound activities were inhibited in a similar pattern by inhibitors of β-glucosidases, 1,5-gluconolactone and nojirimycin. This bifunctional enzyme does not bear any relationship to the utilization of xylans in Cryptococcus albidus.  相似文献   
37.
Xylanase A from the phytopathogenic bacterium Erwinia chrysanthemi is classified as a glycoside hydrolase family 30 enzyme (previously in family 5) and is specialized for degradation of glucuronoxylan. The recombinant enzyme was crystallized with the aldotetraouronic acid β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronosyl-(1→2)]-β-D-xylopyranosyl-(1→4)-D-xylose as a ligand. The crystal structure of the enzyme-ligand complex was solved at 1.39 ? resolution. The ligand xylotriose moiety occupies subsites -1, -2 and -3, whereas the methyl glucuronic acid residue attached to the middle xylopyranosyl residue of xylotriose is bound to the enzyme through hydrogen bonds to five amino acids and by the ionic interaction of the methyl glucuronic acid carboxylate with the positively charged guanidinium group of Arg293. The interaction of the enzyme with the methyl glucuronic acid residue appears to be indispensable for proper distortion of the xylan chain and its effective hydrolysis. Such a distortion does not occur with linear β-1,4-xylooligosaccharides, which are hydrolyzed by the enzyme at a negligible rate. DATABASE: Structural and experimental data are available in the Protein Data Bank database under accession number 2y24 [45].  相似文献   
38.

Background

Microbial degradation of acetylated plant hemicelluloses involves besides enzymes cleaving the glycosidic linkages also deacetylating enzymes. A detailed knowledge of the mode of action of these enzymes is important in view of the development of efficient bioconversion of plant materials that did not undergo alkaline pretreatment leading to hydrolysis of ester linkages.

Methods

In this work deacetylation of hardwood acetylglucuronoxylan by acetylxylan esterases from Streptomyces lividans (carbohydrate esterase family 4) and Orpinomyces sp. (carbohydrate esterase family 6) was monitored by 1H-NMR spectroscopy.

Results

The 1H-NMR resonances of all acetyl groups in the polysaccharide were fully assigned. The targets of both enzymes are 2- and 3-monoacetylated xylopyranosyl residues and, in the case of the Orpinomyces sp. enzyme, also the 2,3-di-O-acetylated xylopyranosyl residues. Both enzymes do not recognize as a substrate the 3-O-acetyl group on xylopyranosyl residues α-1,2-substituted with 4-O-methyl-d-glucuronic acid.

Conclusions

The 1H-NMR spectroscopy approach to study positional and substrate specificity of AcXEs outlined in this work appears to be a simple way to characterize catalytic properties of enzymes belonging to various CE families.

Significance

The results contribute to development of efficient and environmentally friendly procedures for enzymatic degradation of plant biomass.  相似文献   
39.
Measurements of esterase activity by enzyme-coupled assays on monoacetates of 4-nitrophenyl β-d-xylopyranoside and 4-nitrophenyl α-l-arabinofuranoside showed that acetylxylan esterases of families 1, 4 and 5 produced by Trichoderma reesei and Penicillium purpurogenum have a strong preference for deacetylation of position 2 in xylopyranosides. The acetylxylan esterases exhibit only weak activity on acetylated arabinofuranosides, with 2-acetate as the best substrate. Acetyl esterases of family 16 produced by the same two fungi deacetylate in xylopyranosides preferentially positions 3 and 4. Their specific activity on arabinofuranosides is also much lower than on xylopyranosides, however, substantially greater than that in the case of typical acetylxylan esterases.  相似文献   
40.
Identification of genes encoding microbial glucuronoyl esterases   总被引:1,自引:0,他引:1  
Li XL  Spániková S  de Vries RP  Biely P 《FEBS letters》2007,581(21):4029-4035
One type of covalent linkages connecting lignin and hemicellulose in plant cell walls is the ester linkage between 4-O-methyl-D-glucuronic acid of glucuronoxylan and lignin alcohols. An enzyme that could hydrolyze such linkages, named glucuronoyl esterase, occurs in the cellulolytic system of the wood-rotting fungus Schizophyllum commune. Here we report partial amino acid sequences of the enzyme and the results of subsequent search for homologous genes in sequenced genomes. The homologous genes of unknown functions were found in genomes of several filamentous fungi and one bacterium. The gene corresponding to the cip2 gene of Hypocrea jecorina (Trichoderma reesei), known to be up-regulated under conditions of induction of cellulolytic and hemicellulolytic enzymes, was over-expressed in H. jecorina. The product of the cip2 gene was purified to homogeneity and shown to exhibit glucuronoyl esterase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号