首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   11篇
  293篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   10篇
  2014年   8篇
  2013年   9篇
  2012年   7篇
  2011年   18篇
  2010年   11篇
  2009年   10篇
  2008年   21篇
  2007年   16篇
  2006年   16篇
  2005年   14篇
  2004年   14篇
  2003年   11篇
  2002年   12篇
  2001年   13篇
  2000年   9篇
  1999年   8篇
  1998年   11篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1966年   3篇
  1965年   1篇
排序方式: 共有293条查询结果,搜索用时 0 毫秒
101.
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in α-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Δ in the post-diauxic phase showed drastic reduction in the levels of α-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Δ showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Δ exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.  相似文献   
102.
The sphingolipid, ceramide, self-assembles in the mitochondrial outer membrane (MOM), forming large channels capable of translocating proteins. These channels are believed to be involved in protein release from mitochondria, a key decision-making step in cell death. Synthetic analogs of ceramide, bearing modifications in each of the major structural features of ceramide were used to probe the molecular basis for the stability of ceramide channels. Channel stability and mitochondrial permeabilization were disrupted by methylation of the C1-hydroxyl group whereas modifications of the C3 allylic hydroxyl group were well tolerated. A change in chirality at C2 that would influence the orientation of the C1-hydroxyl group resulted in a strong reduction of channel-forming ability. Similarly, methylation of the amide nitrogen is also detrimental to channel formation. Many changes in the degree, location and nature of the unsaturation of ceramide had little effect on mitochondrial permeabilization. Competition experiments between ceramide and analogs resulted in synergy with structures compatible with the ceramide channel model and antagonism with incompatible structures. The results are consistent with ceramide channels being highly organized structures, stabilized by specific inter-molecular interactions, similar to the interactions responsible for protein folding.  相似文献   
103.
Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell's substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions. We find that both the spread area and the substrate stiffness influence traction forces in an independent manner, but these factors have opposite effects: cells on stiffer substrates produce higher average forces, whereas cells with larger spread areas generate lower average forces. We show that post density influences the generation of traction forces in a manner that is more dominant than the effect of spread area. Additionally, we observe that focal adhesions respond to spread area, substrate stiffness, and post density in a manner that closely matches the trends seen for traction forces. This work supports the notion that traction forces and focal adhesions have a close relationship in their response to mechanical cues.  相似文献   
104.
In higher plants, glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.2) are the predominant enzymes in nitrogen metabolism. In this study, we cloned both the GS and GDH genes and analyzed their expression levels and variations in their activity in developing and germinating x Triticosecale (cv. Witon) kernels. The developing kernel samples were collected 3, 5, 7, 9, 13, 15, 20, 25, 30, 35, 40 and 45 days after flowering (DAF). The germinating kernel samples were collected after 8, 16, 24, 48 and 72 h of imbibition. There are two GS isoforms that are localized to different compartments: the cytosol (GS1) and the chloroplast (GS2). Five cDNAs encoding GS proteins in triticale plants were obtained using RT-PCR. We cloned the four genes encoding GS1, which we designated TsGS1-1, TsGS1-2, TsGS1-3 and TsGS1-4 and the only gene encoding GS2, which was designated TsGS2-1. We studied the changes in the enzymatic activity and the expression profiles of the GDH, GS1 and GS2 genes in both the developing and germinating seeds of triticale. Based on our results, there is likely cooperation between GDH and GS1 in the synthesis of glutamine and glutamate during the early stages of seed formation and in the scutella of kernels for up to 24 h of imbibition.  相似文献   
105.
Ceramide functions as an important second messenger in apoptosis signaling pathways. In this report, we show that treatment of NT-2 neuronal precursor cells with hypoxia/reoxygenation (H/R) resulted in ceramide up-regulation. This elevation in ceramide was primarily due to the actions of acid sphingomyelinase and ceramide synthase LASS 5, demonstrating the action of the salvage pathway. Hypoxia/reoxygenation treatment led to Bax translocation from the cytoplasm to mitochondria and cytochrome c release from mitochondria. Down-regulation of either acid sphingomyelinase or LASS 5-attenuated ceramide accumulation and H/R-induced Bax translocation to mitochondria. Overall, we have demonstrated that ceramide up-regulation following H/R is pertinent to Bax activation to promote cell death.  相似文献   
106.
In this study, we investigated the roles of very long-chain fatty acid (VLCFA) synthesis by fatty acid elongase 3 (ELO3) in the regulation of telomere length and life span in the yeast Saccharomyces cerevisiae. Loss of VLCFA synthesis via deletion of ELO3 reduced telomere length, and reconstitution of the expression of wild type ELO3, and not by its mutant with decreased catalytic activity, rescued telomere attrition. Further experiments revealed that alterations of phytoceramide seem to be dispensable for telomere shortening in response to loss of ELO3. Interestingly, telomere shortening in elo3Delta cells was almost completely prevented by deletion of IPK2 or KCS1, which are involved in the generation of inositol phosphates (IP4, IP5, and inositol pyrophosphates). Deletion of IPK1, which generates IP6, however, did not affect regulation of telomere length. Further data also suggested that elo3Delta cells exhibit accelerated chronologic aging, and reduced replicative life span compared with wild type cells, and deletion of KCS1 helped recover these biological defects. Importantly, to determine downstream mechanisms, epistasis experiments were performed, and data indicated that ELO3 and YKU70/80 share a common pathway for the regulation of telomere length. More specifically, chromatin immunoprecipitation assays revealed that the telomere binding and protective function of YKu80p in vivo was reduced in elo3Delta cells, whereas its non-homologues end-joining function was not altered. Deletion of KCS1 in elo3Delta cells recovered the telomere binding and protective function of Ku, consistent with the role of KCS1 mutation in the rescue of telomere length attrition. Thus, these findings provide initial evidence of a possible link between Elo3-dependent VLCFA synthesis, and IP metabolism by KCS1 and IPK2 in the regulation of telomeres, which play important physiological roles in the control of senescence and aging, via a mechanism involving alterations of the telomere-binding/protection function of Ku.  相似文献   
107.

Background  

Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts.  相似文献   
108.

Background  

Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea.  相似文献   
109.
A series of novel isosteric analogs of the ceramidase inhibitors, (1S,2R)-N-myristoylamino-phenylpropanol-1 (d-e-MAPP) and (1R,2R)-N-myristoylamino-4'-nitro-phenylpropandiol-1,3 (B13), with modified targeting and physicochemical properties were designed, synthesized, and evaluated as potential anticancer agents. When MCF7 cells were treated with the analogs, results indicated that the new analogs were of equal or greater potency compared to the parent compounds. Their activity was predominantly defined by the nature of the modification of the N-acyl hydrophobic interfaces: N-acyl analogs (class A), urea analogs (class B), N-alkyl analogs (class C, lysosomotropic agents), and omega-cationic-N-acyl analogs (class D, mitochondriotropic agents). The most potent compounds belonged to either class D, the aromatic ceramidoids, or to class C, the aromatic N-alkylaminoalcohols. Representative analogs selected from this study were also evaluated by the National Cancer Institute In Vitro Anticancer Drug Discovery Screen. Again, results showed a similar class-dependent activity. In general, the active analogs were non-selectively broad spectrum and had promising activity against all cancer cell lines. However, some active analogs of the d-e-MAPP family were selective against different types of cancer. Compounds LCL85, LCL120, LCL385, LCL284, and LCL204 were identified to be promising lead compounds for therapeutic development.  相似文献   
110.
SUMMARY: Sphingolipids are a structurally diverse group of molecules based on long-chain sphingoid bases that are found in animal, fungal and plant cells. In contrast to the situation in animals and yeast, much less is known about the spectrum of sphingolipid species in plants and the roles they play in mediating cellular processes. Here, we report the cloning and characterization of a plant ceramidase from rice (Oryza sativa spp. Japonica cv. Nipponbare). Sequence analysis suggests that the rice ceramidase (OsCDase) is similar to mammalian neutral ceramidases. We demonstrate that OsCDase is a bona fide ceramidase by heterologous expression in the yeast double knockout mutant Deltaypc1Deltaydc1 that lacks the yeast ceramidases YPC1p and YDC1p. Biochemical characterization of OsCDase showed that it exhibited classical Michaelis-Menten kinetics, with optimum activity between pH 5.7 and 6.0. OsCDase activity was enhanced in the presence of Ca(2+), Mg(2+), Mn(2+) and Zn(2+), but inhibited in the presence of Fe(2+). OsCDase appears to use ceramide instead of phytoceramide as a substrate. Subcellular localization showed that OsCDase is localized to the endoplasmic reticulum and Golgi, suggesting that these organelles are sites of ceramide metabolism in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号