首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   13篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   17篇
  2012年   18篇
  2011年   21篇
  2010年   9篇
  2009年   17篇
  2008年   12篇
  2007年   14篇
  2006年   5篇
  2005年   13篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有191条查询结果,搜索用时 281 毫秒
81.
Obtaining well‐ordered crystals remains a significant challenge in protein X‐ray crystallography. Carrier‐driven crystallization can facilitate crystal formation and structure solution of difficult target proteins. We obtained crystals of the small and highly flexible SPX domain from the yeast vacuolar transporter chaperone 4 (Vtc4) when fused to a C‐terminal, non‐cleavable macro tag derived from human histone macroH2A1.1. Initial crystals diffracted to 3.3 Å resolution. Reductive protein methylation of the fusion protein yielded a new crystal form diffracting to 2.1 Å. The structures were solved by molecular replacement, using isolated macro domain structures as search models. Our findings suggest that macro domain tags can be employed in recombinant protein expression in E. coli, and in carrier‐driven crystallization.  相似文献   
82.

Background

Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfusion, cardioprotection is linked to glucose metabolism possibly by O-linked β-N-acetylglucosamine (O-GlcNAc). We aimed to investigate the impact of hypoglycemia in hearts from animals with diabetes on myocardial IR tolerance, on the efficacy of IPC and whether modulations of MGU and O-GlcNAc levels are involved in the underlying mechanisms.

Methods

In a Langendorff model using diabetic ZDF (fa/fa) and non-diabetic (fa/+) rats (n = 6–7 in each group) infarct size (IS) was evaluated after 40 min of global ischemia and 120 min reperfusion during hypoglycemia [(glucose) = 3 mmol/l] and normoglycemia [(glucose) = 11 mmol/l]. Myocardial glucose uptake and O-GlcNAc levels were evaluated during reperfusion. IPC was induced by 2 × 5 min of global ischemia prior to index ischemia.

Results

IS increased in hearts from animals with (p < 0.01) and without (p < 0.01) diabetes during hypoglycemia compared to normoglycemia. IPC reduced IS during normoglycemia in both animals with (p < 0.01) and without (p < 0.01) diabetes. During hypoglycemia, however, IPC only reduced IS in hearts from animals with diabetes (p < 0.05). IPC increased MGU during reperfusion and O-GlcNAc levels in animals with diabetes during hypo- (MGU: p < 0.05, O-GlcNAc: p < 0.05) and normoglycemia (MGU: p < 0.01, O-GlcNAc: p < 0.05) and in animals without diabetes only during normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01).

Conclusions

Hypoglycemia increases myocardial susceptibility to IR injury in hearts from animals with and without diabetes. In contrast to hearts from animals without diabetes, the hearts from animals with diabetes are amenable to cardioprotection during hypoglycemia. In parallel with IPC induced cardioprotection, MGU and O-GlcNAc levels increase suggesting that increased MGU and O-GlcNAc levels are involved in the mechanisms of IPC.
  相似文献   
83.
Despite the importance of peatlands as a major store of sequestered carbon and the role of fungi in releasing sequestered C, we know little about the community structure of fungi in peatlands. We investigated these across a gradient of naturally regenerating peatland vegetation using denaturing gradient gel electrophoresis (DGGE) and clone libraries of fragments of the fungal rRNA internal transcribed spacer (ITS) region. Significant changes in the fungal community structure of peat samples at different stages of regeneration were observed, which relate to the composition of the vegetation recolonizing these sites. Cloning and sequence analysis also demonstrated a potential shift in the relative abundance of the main fungal phyla. Some of the clones identified to genus level were highly related to fungi known to play a role in the degradation of plant litter or wood in similar ecosystems and/or form mycorrhizal associations. In addition, several fungal isolates highly related to peat clones were obtained, and their enzymic capacity to degrade structural plant tissues was assessed. Together, these results suggest that the fungal community composition of peat may be an important indicator of the status of regeneration and potential carbon sequestration of cutover peatlands.  相似文献   
84.
The chaperone calreticulin is a highly conserved eukaryotic protein mainly located in the endoplasmic reticulum. It contains a free cysteine SH group but does not form disulfide-bridged dimers under physiological conditions, indicating that the SH group may not be fully accessible in the native protein. Using PAGE, urea gradient gel electrophoresis, capillary electrophoresis and MS, we show that dimerization through the SH group can be induced by lowering the pH to 5-6, heating, or under conditions that favour partial unfolding such as urea concentrations above 2.6 m or SDS concentrations above 0.025%. Moreover, we show that calreticulin also has the ability to self-oligomerize through noncovalent interactions at urea concentrations above 2.6 m at pH below 4.6 or above pH 10, at temperatures above 40 degrees C, or in the presence of high concentrations of organic solvents (25%), conditions that favour partial unfolding or an intramolecular local conformational change that allows oligomerization, resulting in a heterogeneous mixture of oligomers consisting of up to 10 calreticulin monomers. The oligomeric calreticulin was very stable, but oligomerization was partially reversed by addition of 8 m urea or 1% SDS, and heat-induced oligomerization could be inhibited by 8 m urea or 1% SDS when present during heating. Comparison of the binding properties of monomeric and oligomeric calreticulin in solid-phase assays showed increased binding to peptides and denatured proteins when calreticulin was oligomerized. Thus, calreticulin shares the ability to self-oligomerize with other important chaperones such as GRP94 and HSP90, a property possibly associated with their chaperone activity.  相似文献   
85.
In green fluorescent protein (GFP), chromophore biosynthesis is initiated by a spontaneous main-chain condensation reaction. Nucleophilic addition of the Gly67 amide nitrogen to the Ser65 carbonyl carbon is catalyzed by the protein fold and leads to a heterocyclic intermediate. To investigate this mechanism, we substituted the highly conserved residues Arg96 and Glu222 in enhanced GFP (EGFP). In the R96M variant, the rate of chromophore formation is greatly reduced (time constant = 7.5 x 10(3) h, pH 7) and exhibits pH dependence. In the E222Q variant, the rate is also attenuated at physiological pH (32 h, pH 7) but is accelerated severalfold beyond that of EGFP at pH 9-10. In contrast, EGFP maturation is pH-independent and proceeds with a time constant of 1 h (pH 7-10). Mass spectrometric results for R96M and E222Q indicate accumulation of the pre-cyclization state, consistent with rate-limiting backbone condensation. The pH-rate profile implies that the Glu222 carboxylate titrates with an apparent pK(a) of 6.5 in R96M and that the Gly67 amide nitrogen titrates with an apparent pK(a) of 9.2 in E222Q. These data suggest a model for GFP chromophore synthesis in which the carboxylate of Glu222 plays the role of a general base, facilitating proton abstraction from the Gly67 amide nitrogen or the Tyr66 alpha-carbon. Arg96 fulfills the role of an electrophile by lowering the respective pK values and stabilizing the alpha-enolate. Modulating the base strength of the proton-abstracting group may aid in the design of fast-maturing GFPs with improved characteristics for real-time monitoring of cellular events.  相似文献   
86.
Rosenow MA  Patel HN  Wachter RM 《Biochemistry》2005,44(23):8303-8311
The mechanism of chromophore biosynthesis in green fluorescent protein (GFP) is triggered by a spontaneous main chain cyclization reaction of residues 65-67. Here, we demonstrate that the initially colorless Y66L variant, designed to trap chromophore precursor states, is oxidatively modified to generate yellow chromophores that absorb at 412 and 374 nm. High- and low-pH crystal structures determined to 2.0 and 1.5 A resolution, respectively, are consistent with pi-orbital conjugation of a planar Leu66-derived adduct with the imidazolinone ring, which is approximately 90 and 100% dehydrated, respectively. Time-, base-, and oxygen-dependent optical properties suggest that the yellow chromophores are generated from a 338 nm-absorbing intermediate, interpreted to be the Y66L analogue of the wild-type GFP chromophore. Generation of this species is catalyzed by a general base such as formate, and proceeds via a cyclization-oxidation-dehydration mechanism. The data suggest that a hydration-dehydration equilibrium exists in the cyclic form of the peptide, and that dehydration is favored upon extensive conjugation with the modified side chain. We conclude that the mechanism of GFP chromophore biosynthesis is not driven by the aromatic character of residue 66. In the low-pH X-ray structure, a highly unusual cross-link is observed between His148 and the oxidized Leu66 side chain, suggesting a conjugate addition reaction of the imidazole nitrogen to the highly electrophilic diene group of the yellow chromophore. The reactivity described here further expands the chemical diversity observed in the active site of GFP-like proteins, and may allow for covalent attachment of functional groups to the protein scaffold for catalytic purposes.  相似文献   
87.
Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited. In the present study, we analyze the tumoricidal capacity of M-DC8(+) DCs, which represent a major subpopulation of human blood DCs. We demonstrate that IFN-gamma-stimulated M-DC8(+) DCs lyse different tumor cell lines but not normal cells. In addition, we show that tumor cells markedly enhance the production of TNF-alpha by M-DC8(+) DCs via cell-to-cell contact and that this molecule essentially contributes to the killing activity of M-DC8(+) DCs. Furthermore, we illustrate the ability of M-DC8(+) DCs to promote proliferation, IFN-gamma production, and tumor-directed cytotoxicity of NK cells. The M-DC8(+) DC-mediated enhancement of the tumoricidal potential of NK cells is mainly dependent on cell-to-cell contact. These results reveal that, in addition to their crucial role in activating tumor-specific T cells, blood DCs exhibit direct tumor cell killing and enhance the tumoricidal activity of NK cells. These findings point to the pivotal role of DCs in triggering innate and adaptive immune responses against tumors.  相似文献   
88.
Shedding light on ADAM metalloproteinases   总被引:22,自引:0,他引:22  
ADAM metalloproteinase disintegrins have emerged as the major proteinase family that mediates ectodomain shedding, the proteolytic release of extracellular domains from their membrane-bound precursors. Recent gene-manipulation studies have established the role of ADAM-mediated shedding in mammalian physiology and, in addition, raised the issue of functional redundancy among ADAM sheddases. ADAM sheddases activate, for example, growth factors and cytokines, thus regulating signalling pathways that are important in development and pathological processes such as cancer. The recent studies have also begun to elucidate the substrate specificity and the mechanisms that control ADAM-mediated shedding events that regulate, for example, growth-factor and Notch signalling, and the processing of the amyloid precursor protein.  相似文献   
89.
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA?/? mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA?/? animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed.SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.  相似文献   
90.
Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号