首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   13篇
  193篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   17篇
  2012年   18篇
  2011年   21篇
  2010年   9篇
  2009年   17篇
  2008年   12篇
  2007年   14篇
  2006年   5篇
  2005年   13篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
11.
Bacillus megaterium, the "big beast," is a Gram-positive bacterium with a size of 4 × 1.5 μm. During the last years, it became more and more popular in the field of biotechnology for its recombinant protein production capacity. For the purpose of intra- as well as extracellular protein synthesis several vectors were constructed and commercialized (MoBiTec GmbH, Germany). On the basis of two compatible vectors, a T7 RNA polymerase driven protein production system was established. Vectors for chromosomal integration enable the direct manipulation of the genome. The vitamin B(12) biosynthesis of B. megaterium served as a model for the systematic development of a production strain using these tools. For this purpose, the overexpression of chromosomal and plasmid encoded genes and operons, the synthesis of anti-sense RNA for gene silencing, the removal of inhibitory regulatory elements in combination with the utilization of strong promoters, directed protein design, and the recombinant production of B(12) binding proteins to overcome feedback inhibition were successfully employed. For further system biotechnology based optimization strategies the genome sequence will provide a closer look into genomic capacities of B. megaterium. DNA arrays are available. Proteome, fluxome and metabolome analyses are possible. All data can be integrated by using a novel bioinformatics platform. Finally, the size of the "big beast" B. megaterium invites for cell biology research projects. All these features provide a solid basis for challenging biotechnological approaches.  相似文献   
12.
Pancreatic cancer (PC) still remains a major cause of cancer-related death worldwide and alternative treatments are urgently required. A common problem of PC is the development of resistance against apoptosis that limits therapeutic success. Here we demonstrate that the prototypical Smac mimetic BV6 cooperates with the stimulator of interferon (IFN) genes (STING) ligand 2′,3′-cyclic guanosine monophosphate–adenosine monophosphate (2′3′-cGAMP) to trigger necroptosis in apoptosis-deficient PC cells. Pharmacological inhibition of key components of necroptosis signaling, such as receptor-interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL), significantly rescues PC cells from 2′3′-cGAMP/BV6/zVAD.fmk-mediated cell death, suggesting the induction of necroptosis. Consistently, 2′3′-cGAMP/BV6 co-treatment promotes phosphorylation of MLKL. Furthermore, we show that 2′3′-cGAMP stimulates the production of type I IFNs, which cooperate with BV6 to trigger necroptosis in apoptosis-deficient settings. STING silencing via siRNA or CRISPR/Cas9-mediated gene knockout protects PC cells from 2′3′-cGAMP/BV6/zVAD.fmk-mediated cell death. Interestingly, we demonstrate that nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNFα), and IFN-regulatory factor 1 (IRF1) signaling are involved in triggering 2′3′-cGAMP/BV6/zVAD.fmk-induced necroptosis. In conclusion, we show that activated STING and BV6 act together to exert antitumor effects on PC cells with important implications for the design of new PC treatment concepts.Subject terms: Cancer, Cancer  相似文献   
13.
Bile acid deficiency is a serious syndrome in newborns that can result in death if untreated. 5β-Reductase deficiency is one form of bile acid deficiency and is characterized by dramatically decreased levels of physiologically active 5β-reduced bile acids. AKR1D1 (aldo-keto reductase 1D1) is the only known human enzyme that stereo-specifically reduces the Δ4 double bond in 3-keto steroids and sterols to yield the 5β-hydrogenated product. Analysis of the AKR1D1 gene in five patients with 5β-reductase deficiency revealed five different mutations resulting in an amino acid substitution in the protein. To investigate a causal role for these observed point mutations in AKR1D1 in 5β-reductase deficiency, we characterized their effect on enzymatic properties. Attempts to purify mutant enzymes by overexpression in Escherichia coli only yielded sufficient amounts of the P133R mutant for further characterization. This enzyme displayed a highly reduced Km and Vmax reminiscent of uncompetitive kinetics with 4-cholesten-7α-ol-3-one as substrate. In addition, this mutant displayed no change in cofactor affinity but was more thermolabile in the absence of NADPH as judged by CD spectroscopy. All mutants were compared following expression in HEK 293 cells. Although these enzymes were equally expressed based on mRNA levels, protein expression and functional activity were dramatically reduced. Cycloheximide treatment also revealed that several of the expressed mutants were less stable. Our findings show that the reported mutations in AKR1D1 in patients with 5β-reductase lead to significantly decreased levels of active enzyme and could be causal in the development of bile acid deficiency syndrome.  相似文献   
14.
15.
16.
Plant Molecular Biology - In the above mentioned publication, part of Fig. 6B was distorted (extra diagonal lines appeared). The original article has been corrected and the proper version...  相似文献   
17.
Many biocatalysts exhibit strict stereospecificity and regioselectivity. However, their thermodynamically controlled equilibria often limit yields in industrial production processes. Herein, we describe the synthesis of fructooligosaccharides from sucrose by various fructansucrases. We previously demonstrated that transfructosylation to diverse acceptors yields d-glucose and the fructose-containing product along with diverse by-products. To streamline this reaction, we developed a procedure that allows the enhanced transfructosylation of diverse acceptors by different fructansucrases. By diverting the released glucose from the reaction via metabolism by living cells we limited the back reaction and forced the consumption of sucrose. The basic conditions for the resulting fermentation process were optimized by a genetic algorithm and integrated into a kinetic model. This strategy allows the prediction of optimal reaction parameters for the production of desired target compounds.  相似文献   
18.
19.
20.
Alternative splicing of the Krüppel-like factor 6 (KLF6) tumor suppressor into an antagonistic splice variant 1 (SV1) is a pathogenic event in several cancers including hepatocellular carcinoma (HCC) because elevated SV1 is associated with increased tumor metastasis and mortality. Ras activation is one factor that can enhance KLF6 splicing in cancer cells, however pathways driving KLF6 splicing are unknown. Splice site selection is regulated by splice factors that include serine/arginine-rich (SR) proteins such as SRSF1 (ASF-SF2), which in turn is controlled by phosphoinositide 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) signaling pathway. Because signaling pathways downstream of the liver mitogen hepatocyte growth factor (HGF) include Akt, we explored whether HGF induces KLF6 alternative splicing. In HepG2 cells, HGF (25 ng/mL) significantly increases the ratio of SV1/KLF6 full by 40% through phosphorylation of Akt and subsequent downregulation of two splicing regulators, SRSF3 (SRp20) and SRSF1. Decreased SRSF3 levels regulate SRSF1 levels by alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD), which stimulates cell growth by decreasing p21 levels. Enhanced cell replication through increased KLF6 alternative splicing is a novel growth-promoting pathway of HGF that could contribute to the molecule's mitogenic activity in physiologic liver growth and hepatocellular carcinoma. Mol Cancer Res; 10(9); 1216-27. ?2012 AACR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号