首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3796篇
  免费   239篇
  国内免费   3篇
  4038篇
  2023年   25篇
  2022年   53篇
  2021年   101篇
  2020年   61篇
  2019年   68篇
  2018年   94篇
  2017年   75篇
  2016年   103篇
  2015年   186篇
  2014年   165篇
  2013年   273篇
  2012年   267篇
  2011年   259篇
  2010年   182篇
  2009年   135篇
  2008年   190篇
  2007年   211篇
  2006年   179篇
  2005年   165篇
  2004年   134篇
  2003年   129篇
  2002年   119篇
  2001年   82篇
  2000年   70篇
  1999年   59篇
  1998年   25篇
  1997年   33篇
  1996年   15篇
  1995年   26篇
  1994年   20篇
  1993年   15篇
  1992年   32篇
  1991年   31篇
  1990年   28篇
  1989年   29篇
  1988年   23篇
  1987年   20篇
  1986年   22篇
  1985年   20篇
  1984年   27篇
  1983年   26篇
  1982年   24篇
  1981年   19篇
  1979年   19篇
  1977年   14篇
  1976年   14篇
  1975年   19篇
  1974年   15篇
  1972年   14篇
  1971年   12篇
排序方式: 共有4038条查询结果,搜索用时 15 毫秒
991.
Fiber size analysis, water retention value, and Simons’ stain measurements were assessed for their potential to predict the susceptibility of a given substrate to enzymatic hydrolysis. Slight modifications were made to the fiber size analysis and water retention protocols to adapt these measurements to evaluate substrates for cellulolytic hydrolysis rather than pulps for papermaking. Lodgepole pine was pretreated by the steam and ethanol-organosolv processes under varying conditions. The Simons’ stain procedure proved to be an effective method for indicating the potential ease of enzymatic hydrolysis of substrates pretreated by either process or when the pretreatment conditions were altered.  相似文献   
992.
993.
Bovine chymosin, an aspartyl protease extracted from abomasum of suckling calves, is synthesized in vivo as preprochymosin and secreted as prochymosin which is autocatalytically activated to chymosin. Chymosin is bilobular, with Asp 32 and Asp 215 acting as the catalytic residues. Chymosin A and chymosin B have pH optima of 4.2 and 3.8, respectively, and act to initiate milk clotting by cleaving kappa-casein between Phe 105 and Met 106. The gene encoding chymosin has been cloned and expressed in suitable bacteria and yeast hosts under the control of lac, trp, trp-beta, gly A genes, and serine hydroxymethyl-transferase promoters. Protein engineering of chymosin has also been attempted. A number of companies are now producing recombinant chymosin for commercial use in cheese manufacture.  相似文献   
994.
A new class of copper(II) nanohybrid solids, LCu(CH3COO)2 and LCuCl2, have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5–10 and 60–70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV–vis spectroscopy and inhibition kinetics using Lineweaver–Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC50 values (0.025–0.032 μg/ml) are similar to the IC50 value of the standard drug chloroquine used in the bioassay. Lineweaver–Burk plots for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH3COO)2 and LCuCl2 were found to be 10 and 13 μM, respectively. The IC50 values for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 were found to be 14 and 17 μM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, β-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of antimalarial activity of these compounds via plasmepsin II inhibition in the P. falciparum malaria parasite is demonstrated.  相似文献   
995.
BBR3464 is a trinuclear platinum compound of formula [{trans-PtCl(NH3)2}2-μ-trans-Pt(NH3)2{NH2(CH2)6NH2}2]4+. It is a new-generation platinum chemotherapeutic agent that exhibits cytotoxicity at ten to thousand times lower dose limit compared to the well-known platinum drug cisplatin, in cisplatin-sensitive as well as in cisplatin-resistant cells. DNA is thought to be the primary cellular target of BBR3464. In this work, we have applied high-resolution atomic force microscopy (AFM) for the first time, to obtain direct information on BBR3464-induced structural changes of DNA. It is found that the DNA molecules get compacted after treatment with BBR3464, for the drug:DNA molar ratio and the drug treatment period of 0.01 and 48 h, respectively. These values of molar ratio and incubation period have been obtained previously, as a result of biochemical optimization studies carried out for achieving maximum drug effects. The DNA structural changes, as observed in AFM topographs, have been correlated to the bulk level spectroscopic information. A remark on the significance of BBR3464-induced DNA compaction with respect to the available AFM reports on DNA modification by cisplatin has been made.  相似文献   
996.
997.
998.
999.
1000.
The ultimate success of micropropagation on a commercial scale depends on the ability to transfer plants out of culture on a large scale, at low cost and with high survival rates. During field transfer the in vitro grown plantlets are unable to compete with soil microbes and to cope with the environmental conditions. The in vitro culture conditions result in the plantlets with altered morphology, anatomy and physiology. In order to increase growth and reduce mortality in plantlets at the acclimatisation stage, efforts are focused on the control of both physical and chemical environment and biohardening of micropropagated plantlets. This review describes the abiotic and biotic stresses and current developing methods for the acclimatization of microshoots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号