首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   18篇
  国内免费   2篇
  266篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   24篇
  2020年   7篇
  2019年   4篇
  2018年   12篇
  2017年   13篇
  2016年   15篇
  2015年   13篇
  2014年   21篇
  2013年   20篇
  2012年   15篇
  2011年   15篇
  2010年   9篇
  2009年   5篇
  2008年   7篇
  2007年   12篇
  2006年   6篇
  2005年   12篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
  1978年   4篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
111.
The Escherichia coli multidrug transporter MdfA contains a membrane-embedded charged residue (Glu-26) that was shown to play an important role in substrate recognition. To identify additional determinants of multidrug recognition we isolated 58 intragenic second-site mutations that restored the function of inactive MdfA E26X mutants. In addition, two single-site mutations that enhanced the activity of wild-type MdfA were identified. Most of the mutations were found in two regions, the cytoplasmic half of transmembrane segments (TMs) 4, 5, and 6 (cluster 1) and the periplasmic half of TM 1 and 2 (cluster 2). The identified residues were mutated to cysteines in the background of a functional cysteine-less MdfA, and substrate protection against alkylation was analyzed. The results support the suggestion that the two clusters are involved in substrate recognition. Using inverted membrane vesicles we observed that a proton electrochemical gradient (Deltamicro(H(+)), inside positive and acidic) enhanced the substrate-protective effect in the cytoplasmic region, whereas it largely reduced this effect in the periplasmic side of MdfA. Therefore, we propose that substrates interact with two sites in MdfA, one in the cytoplasmic leaflet of the membrane and the other in the periplasmic leaflet. Theoretically, these domains could constitute a large part of the multidrug pathway through MdfA.  相似文献   
112.
Silk fibroin (SF), extracted from Bombyx mori, has unique physicochemical properties to achieve an efficient wound dressing. In this study, reduced graphene oxide (RGO)/ZnO NPs/silk fibroin nanocomposite was made, and an innovative nanofiber of SF/polyvinyl alcohol (PVA)/RGO/ZnO NPs was ready with the electrospinning technique and successfully characterized. The results of MIC and OD analyses were used to investigate the synthesized materials' antibacterial effects and displayed that the synthesized materials could inhibit growth against Staphylococcus aureus and Escherichia coli bacteria. However, both in vitro cytotoxicity (MTT) and scratch wound studies have shown that RGO/ZnO NPs and SF/PVA/RGO/ZnO NPs are not only non-toxic to NIH 3T3 fibroblasts, but also can cause cell viability, cell proliferation, and cell migration. Furthermore, improving the synthesized nanofiber's structural properties in the presence of RGO and ZnO NPs has been confirmed by performing tensile strength, contact angle, and biodegradation analyses. Also, in a cell attachment analysis, fibroblast cells had migrated and expanded well in the nanofibrous structures. Moreover, in vivo assay, SF/PVA/RGO/ZnO NPs nanofiber treated rats and has been shown significant healing activity and tissue regeneration compared with other treated groups. Therefore, this study suggests that SF/PVA/RGO/ZnO NPs nanofiber is a hopeful wound dressing for preventing bacteria growth and improving superficial wound repair.  相似文献   
113.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   
114.
Alternative bone regeneration strategies that do not rely on harvested tissue or exogenous growth factors are needed. One of the major challenges in tissue reconstruction is recreating the bone tissue microenvironment using the appropriate combination of cells, scaffold, and stimulation to direct differentiation. This study presents a bone regeneration formulation that involves the use of human adipose-derived mesenchymal stem cells (hASCs) and a three-dimensional (3D) hydrogel scaffold based on self-assembled RADA16 peptides containing superparamagnetic iron oxide nanoparticles (NPs). Although superparamagnetic NPs could be used as stimulus to manipulate the cell proliferation and differentiation, in this paper their use is explored for assisting osteogenic differentiation of hASCs in conjunction with direct stimulation by extremely low-frequency pulsed electromagnetic fields (pEMFs). Cellular morphology, proliferation, and viability, as well as alkaline phosphatase activity, calcium deposition, and osteogenic capacity were monitored for cells cultured up to 21 days in the 3D construct. The results show that the pEMFs and NPs do not have any negative effect on cell viability, but instead distinctly induced early differentiation of hASCs to an osteoblastic phenotype, when compared with cells without biophysical stimulation. This effect is attributed to synergy between the pEMFs and NPs, which may have stimulated mechanotransduction pathways, which, in turn activated biochemical signals between cells to differentiate or proliferate. This approach may offer a safe and effective option for the treatment of non-union bone fractures. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   
115.
116.
117.
The toxicity of four volatile fatty acids (VFAs) as anaerobic digestion (AD) intermediates was investigated at pH 7. Photobacterium phosphoreum T3 was used as an indicator organism. Binary, ternary and mixtures of AD intermediates were designated by letters A (acetic acid + propionic acid), B (acetic acid + butyric acid), C (acetic acid + ethanol), D (propionic acid + butyric acid), E (propionic acid + ethanol), F (butyric acid + ethanol), G (acetic acid + propionic acid + butyric acid), H (acetic acid + propionic acid + ethanol), I (acetic acid + butyric acid+ ethanol), J (propionic acid + butyric acid + ethanol) and K (acetic acid + propionic acid + butyric acid + ethanol) to assess the toxicity through equitoxic mixing ratio method. The IC50 values of acetic acid, propionic acid, butyric acid and ethanol were 9.812, 7.76, 6.717 and 17.33 g/L respectively, displaying toxicity order of: butyric acid > propionic acid > acetic acid > ethanol being additive in nature. The toxic effects of four VFAs could be designated as synergistic and one additive in nature.  相似文献   
118.
Wastewater treatment based on ecological principles is a low cost and highly desirable solution for the developing countries like Pakistan. The present study evaluated the effectiveness of biological treatment systems including Internal Circulation (IC) anaerobic bioreactor and constructed wetlands (CWs) containing macrophytes and mixed algal cultures for industrial wastewater treatment. The IC bioreactor reduced COD (52%), turbidity (89%), EC (24%) of the industrial wastewater. However, the effluents of IC bioreactor did not comply with National Environmental Quality Standards (NEQS) of Pakistan. Post-treatment of IC bioreactor effluents was accomplished in CW containing macrophytes (Arundo donax and Eichhornia crassipes) and mixed algal culture. The CWs planted with macrophytes lowered the concentrations of COD (89%) and turbidity (99%). CWs with algal biomass were not effective in further polishing the effluent. Inhibition of algal biomass growth was observed due to physicochemical characteristics of wastewater. The integrated treatment system consisting of IC bioreactor and macrophytes was found more suitable option for industrial wastewater treatment.  相似文献   
119.
Organomercurials form stable stoichiometric complexes with thiolated nucleosides. The complexes inhibited uptake of ribonucleosides and cytosine arabinoside (CAR) in various types of normal and transformed cells. The inhibition was competitive and reversible (Ki = 3--6 micrometer). The interaction between complexes and transport system displayed a 1:1 stoichiometry. Chemical factors which contributed to the inhibitory power were evaluated with a series of S-alkylated derivatives and S--Hg--R complexes of mercaptonucleosides. The inhibitory potency was not determined exclusively by the hydrophobic nature of either the S-alkylated or the S--Hg--R moieties. Chemical modification of cells with penetrating and nonpenetrating organomercurials lead to stimulation of nucleoside uptake and to an increase in its susceptibility to inhibition by S--Hg--R complexes or S-aklylated derivatives of mercaptopurine ribosides. The kinetic and chemical data obtained with nucleoside analogs and with chemical modifiers suggested complex features of nucleoside transport systems. Four distinct classes of sites were implied: (i) a substrate binding site susceptible directly to competitive inhibition by organomercurial-mercaptonucleoside complexes, (ii) an additional site susceptible either to S-arylalkylated or S-mercuriated derivatives of 6-mercaptopurine ribosides, (iii) SH-containing modifier sites which stimulate uridine uptake upon binding of organomercurials, and (iv) SH-containing modifier sites which inhibit the function upon binding of organomercurials. From the observation that only SH sites related to stimulation were susceptible to modification by macromolecular-SH modifier probes, some conclusions can be drawn regarding the disposition of the various sites in the cell membrane in general and among membrane components in particular.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号