首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4136篇
  免费   238篇
  国内免费   1篇
  4375篇
  2023年   36篇
  2022年   64篇
  2021年   97篇
  2020年   66篇
  2019年   67篇
  2018年   103篇
  2017年   87篇
  2016年   113篇
  2015年   146篇
  2014年   180篇
  2013年   245篇
  2012年   251篇
  2011年   257篇
  2010年   189篇
  2009年   128篇
  2008年   181篇
  2007年   213篇
  2006年   174篇
  2005年   158篇
  2004年   139篇
  2003年   106篇
  2002年   95篇
  2001年   79篇
  2000年   90篇
  1999年   79篇
  1998年   36篇
  1997年   29篇
  1996年   27篇
  1995年   33篇
  1994年   32篇
  1993年   31篇
  1992年   57篇
  1991年   40篇
  1990年   32篇
  1989年   47篇
  1988年   42篇
  1987年   47篇
  1986年   53篇
  1985年   36篇
  1984年   49篇
  1983年   33篇
  1982年   29篇
  1981年   31篇
  1980年   32篇
  1979年   43篇
  1977年   46篇
  1975年   28篇
  1974年   32篇
  1973年   22篇
  1972年   23篇
排序方式: 共有4375条查询结果,搜索用时 56 毫秒
111.
Summary In a pot-culture experiment simulating semi low-land rice field conditions 5 to 11 per cent increase in dry matter yield and 27 to 43 per cent increase in recovery of applied N was obtained by the use of N-Serve and AM nitrification retarders.Although the term frequently used is 'nitrification inhibitors, the term nitrification retarders is proposed since under field conditions these chemicals only partially control the nitrification.Trade name of The Dow Chemical Company, Midland, Michigan, U.S.A. for 2-chloro-6-(trichloromethyl) pyridine.Trade name of Toyo Koatsu Industries, Inc., Tokyo, Japan for 2-amino-4chloro-6methyl pirimidine.  相似文献   
112.
113.
Elevated vascular endothelial growth factor (VEGF) and complement activation are implicated in the pathogenesis of different ocular diseases. The objective of this study was to investigate the hypothesis that dual inhibition of both VEGF and complement activation would confer better protection against ocular inflammation and neovascularization. In this study, we engineered a secreted chimeric VEGF inhibitor domain (VID), a complement inhibitor domain (CID) and a dual inhibitor (ACVP1). Vectors expressing these three inhibitors were constructed and packaged into AAV2 (sextY‐F) particles. The expression and secretion of the proteins were validated by Western blot. The effects of these inhibitors expressed from AAV2 vectors were examined in endotoxin‐induced uveitis (EIU), experimental autoimmune uveoretinitis (EAU) and choroidal neovascularization (CNV) mouse models. The AAV2 vectors expressing the CID‐ and ACVP1‐attenuated inflammation in EIU and EAU model, whereas the vector expressing VID showed improved retinal structure damaged by EAU, but not affect the infiltration of inflammatory cells in EAU or EIU eyes. Both VID and CID vectors improved laser‐induced retinal and choroid/RPE injuries and CNV, whereas ACVP1 vector provided significantly better protection. Our results suggest that gene therapy targeting VEGF and complement components could provide an innovative and long‐term strategy for ocular inflammatory and neovascular diseases.  相似文献   
114.
Prasad A  Pospíšil P 《PloS one》2011,6(7):e22345
Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes.  相似文献   
115.
The characteristics of the uptake of lipophilic cations tetraphenylphosphonium (TPP+) into Candida albicans have been investigated to establish whether TPP+ can be used as a membrane potential probe for this yeast. A membrane potential (delta psi, negative inside) across the plasma membrane of C. albicans was indicated by the intracellular accumulation of TPP+. The steady-state distribution of TPP+ was reached within 60 min and varied according to the expected changes of delta psi. Agents known to depolarize membrane potential caused a rapid and complete efflux of accumulated TPP+. The initial influx of TPP+ was linear over a wide range of TPP+ concentrations (2.5-600 microM), indicating a non mediated uptake. Thus, TPP+ is a suitable delta psi probe for this yeast.  相似文献   
116.
In most cases of E. coli high cell density fermentation process, maximizing cell concentration helps in increasing the volumetric productivity of recombinant proteins usually at the cost of lower specific cellular protein yield. In this report, we describe a process for maintaining the specific cellular yield of Ovine growth hormone (oGH) from E. coli by optimal feeding of yeast extract during high cell density fermentation process. Recombinant oGH was produced as inclusion bodies in Escherichia coli. Specific cellular yield of recombinant oGH was maintained by feeding yeast extract along with glucose during fed-batch fermentation. Glucose to yeast extract ratio of 0.75 was found to be optimum for maintaining the specific cellular oGH yield of 66 mg/g of E. coli cells. Continuous feeding of yeast extract along with glucose helped in reducing acetic acid secretion and promoted higher cell growth during fed-batch fermentation. High cell growth of E. coli and high specific yield of recombinant oGH thus helped in achieving high volumetric productivity of the expressed protein. A maximum of 2 g/l of ovine growth hormone was expressed as inclusion bodies in 12 h of fed-batch fermentation.  相似文献   
117.
Summary Four cyanobacterial inoculants all significantly increased grain and straw yield of rice either alone or in combination with chemical fertilizer. A saving of 25 kg N ha−1 can be attained through cyanobacterial fertilization. Tobacco waste-based cyanobacterial biofertilizer was best in performance. Cyanobacterial acetylene reducing activity in vivo varied from 144 to 255 μmol C2H4 m−2 h−1 in different treatments, being highest for tobacco-based cyanobacterial biofertilizer integrated with 50% chemical N. The nutrient balance for total N, available N, total P and available P was found positive in biofertilizer- and chemical fertilizer-treated plots. The total and available K showed negative balance in all the treatments. The shelf-life of cyanobacterial biofertilizer can be augmented by selecting translucent packing material, dry mixing and paddy straw as a carrier. Dry mixing and a mixing ratio of 50:50 (carrier:cyanobacteria) gave better inoculum loading and shelf-life. Decrease in cyanobacterial population was least in dried cyanobacterial flacks, indicating a possibility of developing cyanobacterial biofertilizer without carrier mixing at the time of production.  相似文献   
118.
The neuronal nitric-oxide synthase (nNOS) flavoprotein domain (nNOSr) contains regulatory elements that repress its electron flux in the absence of bound calmodulin (CaM). The repression also requires bound NADP(H), but the mechanism is unclear. The crystal structure of a CaM-free nNOSr revealed an ionic interaction between Arg(1400) in the C-terminal tail regulatory element and the 2'-phosphate group of bound NADP(H). We tested the role of this interaction by substituting Ser and Glu for Arg(1400) in nNOSr and in the full-length nNOS enzyme. The CaM-free nNOSr mutants had cytochrome c reductase activities that were less repressed than in wild-type, and this effect could be mimicked in wild-type by using NADH instead of NADPH. The nNOSr mutants also had faster flavin reduction rates, greater apparent K(m) for NADPH, and greater rates of flavin auto-oxidation. Single-turnover cytochrome c reduction data linked these properties to an inability of NADP(H) to cause shielding of the FMN module in the CaM-free nNOSr mutants. The full-length nNOS mutants had no NO synthesis in the CaM-free state and had lower steady-state NO synthesis activities in the CaM-bound state compared with wild-type. However, the mutants had faster rates of ferric heme reduction and ferrous heme-NO complex formation. Slowing down heme reduction in R1400E nNOS with CaM analogues brought its NO synthesis activity back up to normal level. Our studies indicate that the Arg(1400)-2'-phosphate interaction is a means by which bound NADP(H) represses electron transfer into and out of CaM-free nNOSr. This interaction enables the C-terminal tail to regulate a conformational equilibrium of the FMN module that controls its electron transfer reactions in both the CaM-free and CaM-bound forms of nNOS.  相似文献   
119.
Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.  相似文献   
120.

Background

Semaphorin 3A is a secreted protein that regulates cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumor progression. However, nothing is known about its role in kidney pathophysiology. Here, we determined whether semaphorin3A is induced after acute kidney injury (AKI) and whether urinary semaphorin 3A can predict AKI in humans undergoing cardiopulmonary bypass (CPB).

Methods and Principal Findings

In animals, semaphorin 3A is localized in distal tubules of the kidney and excretion increased within 3 hr after reperfusion of the kidney whereas serum creatinine was significantly raised at 24 hr. In humans, using serum creatinine, AKI was detected on average only 48 hours after CPB. In contrast, urine semaphorin increased at 2 hours after CPB, peaked at 6 hours (2596±591 pg/mg creatinine), and was no longer significantly elevated 12 hours after CPB. The predictive power of semaphorin 3A as demonstrated by area under the receiver-operating characteristic curve for diagnosis of AKI at 2, 6, and 12 hours after CPB was 0.88, 0.81, and 0.74, respectively. The 2-hour urine semaphorin measurement strongly correlated with duration and severity of AKI, as well as length of hospital stay. Adjusting for CPB time and gender, the 2-hour semaphorin remained an independent predictor of AKI, with an odds ratio of 2.19.

Conclusion

Our results suggest that semaphorin 3A is an early, predictive biomarker in experimental and pediatric AKI, and may allow for the reliable early diagnosis and prognosis of AKI after CPB, much before the rise in serum creatinine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号