首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   104篇
  1276篇
  2023年   4篇
  2022年   15篇
  2021年   25篇
  2020年   10篇
  2019年   13篇
  2018年   24篇
  2017年   6篇
  2016年   18篇
  2015年   52篇
  2014年   53篇
  2013年   76篇
  2012年   75篇
  2011年   70篇
  2010年   49篇
  2009年   39篇
  2008年   67篇
  2007年   80篇
  2006年   58篇
  2005年   55篇
  2004年   60篇
  2003年   53篇
  2002年   52篇
  2001年   45篇
  2000年   43篇
  1999年   30篇
  1998年   10篇
  1997年   15篇
  1996年   9篇
  1995年   11篇
  1994年   10篇
  1993年   9篇
  1992年   18篇
  1991年   13篇
  1990年   10篇
  1989年   13篇
  1988年   7篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
排序方式: 共有1276条查询结果,搜索用时 15 毫秒
21.
22.
23.
Due to the extensive applications of vanillin as flavored compound and increasing consumers concern for its natural and environment friendly mode of production, present work was focused on the selection of bacterial isolate capable of producing vanillin using eugenol biotransformation. Bacterial strain SMS1003 is evidenced as the potential strain for vanillin production and identified as Bacillus safensis (GeneBank accession no. MG561863) using biochemical tests and molecular phylogenic analysis of its 16S rDNA gene sequence. Molar yield of vanillin reached up to 10.7% (0.055?g/L) at 96?h of biotransformation using growing culture of B. safensis SMS1003 in following culture conditions: eugenol concentration 500?mg/L; temperature 37?°C; initial pH 7.0; inoculum volume 4%; volume of culture media 10%; and shaking speed 180?rpm. Vanillin was detected as the single metabolite with a molar yield of 26% (0.12?g/L) at 96?h using resting cells of B. safensis SMS1003. Product confirmation was based on spectral scan using photodiode array detector, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and mass spectroscopy.  相似文献   
24.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), one of the crucial pro-angiogenic factors, functions as a potent inhibitor of endothelial cell (EC) apoptosis. Previous progress has been made towards delineating the VPF/VEGF survival signaling downstream of the activation of VEGFR-2. Here, we seek to define the function of NRP-1 in VPF/VEGF-induced survival signaling in EC and to elucidate the concomitant molecular signaling events that are pivotal for our understanding of the signaling of VPF/VEGF. Utilizing two different in vitro cell culture systems and an in vivo zebrafish model, we demonstrate that NRP-1 mediates VPF/VEGF-induced EC survival independent of VEGFR-2. Furthermore, we show here a novel mechanism for NRP-1-specific control of the anti-apoptotic pathway in EC through involvement of the NRP-1-interacting protein (NIP/GIPC) in the activation of PI-3K/Akt and subsequent inactivation of p53 pathways and FoxOs, as well as activation of p21. This study, by elucidating the mechanisms that govern VPF/VEGF-induced EC survival signaling via NRP-1, contributes to a better understanding of molecular mechanisms of cardiovascular development and disease and widens the possibilities for better therapeutic targets.  相似文献   
25.
26.
27.
28.
The epidermal growth factor (EGF) binding sites on bovine luteal cell membrane have been characterized in detail, and evidence has been obtained for a direct stimulatory effect of EGF on membrane-associated adenylate cyclase activity. The membrane fraction prepared showed the presence of high affinity (Ka = 1.2 +/- 0.7 x 10(-11) M-1), specific, and saturable EGF receptors of Mr = 170,000. The EGF receptors underwent rapid autophosphorylation and down-regulation following treatment of the cells with EGF. Treatment of the cells with 4 beta-phorbol 12-myristate 13-acetate resulted in a diminished binding of 125I-EGF to the receptors. When luteal cells were preincubated with EGF, both basal and forskolin-stimulated adenylate cyclase activity was increased severalfold. This enhancement of the adenylate cyclase activity was dependent upon the duration of the exposure to EGF and on the concentration of the growth factor. An optimal enhancement was observed when the cells were preincubated with 10 ng/ml EGF for 10-15 min. Furthermore, when the membrane fraction prepared from luteal cells was preincubated in vitro with EGF, a similar dose-related and time-dependent increase in basal, as well as forskolin-stimulated, adenylate cyclase activity was observed. These results demonstrate that luteal cell adenylate cyclase activity is finely regulated by EGF. Such a direct interaction between EGF and membrane-associated adenylate cyclase has not been previously recognized.  相似文献   
29.
For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.  相似文献   
30.
Small ubiquitin-related modifiers (SUMOs) are post-translationally conjugated to other proteins and are thereby essential regulators of a wide range of cellular processes. Sumoylation, and enzymes of the sumoylation pathway, are conserved in the malaria causing parasite, Plasmodium falciparum. However, the specific functions of sumoylation in P. falciparum, and the degree of functional conservation between enzymes of the human and P. falciparum sumoylation pathways, have not been characterized. Here, we demonstrate that sumoylation levels peak during midstages of the intra-erythrocyte developmental cycle, concomitant with hemoglobin consumption and elevated oxidative stress. In vitro studies revealed that P. falciparum E1- and E2-conjugating enzymes interact effectively to recognize and modify RanGAP1, a model mammalian SUMO substrate. However, in heterologous reactions, P. falciparum E1 and E2 enzymes failed to interact with cognate human E2 and E1 partners, respectively, to modify RanGAP1. Structural analysis, binding studies, and functional assays revealed divergent amino acid residues within the E1-E2 binding interface that define organism-specific enzyme interactions. Our studies identify sumoylation as a potentially important regulator of oxidative stress response during the P. falciparum intra-erythrocyte developmental cycle, and define E1 and E2 interactions as a promising target for development of parasite-specific inhibitors of sumoylation and parasite replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号