首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1200篇
  免费   89篇
  国内免费   2篇
  1291篇
  2024年   2篇
  2023年   6篇
  2022年   22篇
  2021年   46篇
  2020年   19篇
  2019年   30篇
  2018年   27篇
  2017年   37篇
  2016年   55篇
  2015年   87篇
  2014年   73篇
  2013年   103篇
  2012年   95篇
  2011年   104篇
  2010年   69篇
  2009年   45篇
  2008年   67篇
  2007年   59篇
  2006年   49篇
  2005年   49篇
  2004年   57篇
  2003年   49篇
  2002年   43篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   10篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有1291条查询结果,搜索用时 0 毫秒
11.
Six calves were exposed in succession 12 days at 400 m altitude (control), 12 days at a simulated altitude of 5000 m in a low pressure chamber (experimental), and 14 days at 400 m altitude (recovery). Exposure to 5000 m produced the following changes: intake of feed and water decreased by 47 and 35% respectively, and body weight gain ceased. Rectal temperature rose by 0.4°C. Heart rate increased by 65%. Respiratory rate and blood pH increased moderately. There was an S-shaped rise of haematocrit (from 33 to 45%), which was paralleled by blood viscosity. Plasma viscosity showed a sharp, but transient rise. Short term measurements made during ascent to and descent from 5000 m altitude, both lasting for four hours, showed that some of the changes developed rapidly.  相似文献   
12.
The reservoir of latently HIV-1 infected cells is heterogeneous. To achieve an HIV-1 cure, the reservoir of activatable proviruses must be eliminated while permanently silenced proviruses may be tolerated. We have developed a method to assess the proviral nuclear microenvironment in single cells. In latently HIV-1 infected cells, a zinc finger protein tethered to the HIV-1 promoter produced a fluorescent signal as a protein of interest came in its proximity, such as the viral transactivator Tat when recruited to the nascent RNA. Tat is essential for viral replication. In these cells we assessed the proviral activation and chromatin composition. By linking Tat recruitment to proviral activity, we dissected the mechanisms of HIV-1 latency reversal and the consequences of HIV-1 production. A pulse of promoter-associated Tat was identified that contrasted to the continuous production of viral proteins. As expected, promoter H3K4me3 led to substantial expression of the provirus following T cell stimulation. However, the activation-induced cell cycle arrest and death led to a surviving cell fraction with proviruses encapsulated in repressive chromatin. Further, this cellular model was used to reveal mechanisms of action of small molecules. In a proof-of-concept study we determined the effect of modifying enhancer chromatin on HIV-1 latency reversal. Only proviruses resembling active enhancers, associated with H3K4me1 and H3K27ac and subsequentially recognized by BRD4, efficiently recruited Tat upon cell stimulation. Tat-independent HIV-1 latency reversal of unknown significance still occurred. We present a method for single cell assessment of the microenvironment of the latent HIV-1 proviruses, used here to reveal how T cell stimulation modulates the proviral activity and how the subsequent fate of the infected cell depends on the chromatin context.  相似文献   
13.
Ahrens B 《New biotechnology》2011,28(5):530-537
In the past century, incidences of chronic metabolic diseases, such as obesity and type II diabetes, have increased dramatically. Obesity and abnormal insulin level are associated with a wide variety of health problems including a markedly increased risk for type II diabetes, fatty liver, hepato-biliary and gallbladder diseases, cardiovascular pathologies, neurodegenerative disorders, asthma and a variety of cancers. The development of therapeutic antibodies has evolved over the past decades into a mainstay of therapeutic options for patients with inflammatory diseases and cancer, while other indication areas such as metabolic diseases have so far only been rarely addressed. Although therapeutic antibodies might have advantages over current type II diabetes treatments like favorable serum half-life and high specificity, their development is also likely to face obstacles. For example the technical feasibility of antibody generation against G protein coupled receptors and transporters is challenging, patient compliance for a likely needle application might be limited, bioavailability in organs involved in the pathogenesis like the brain might be suboptimal and reimbursement issues for high treatment costs have to be taken into account. The current review focuses on the pathogenesis and standard therapeutic approaches as well as antibodies in development and potential antibody targets for type II diabetes.  相似文献   
14.
Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO2 + 2H2O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO2. The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg−1, which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.  相似文献   
15.
BACKGROUND: The centrosome is composed of a centriole pair and pericentriolar material (PCM). By marking the site of PCM assembly, the centrioles define the number of centrosomes present in the cell. The PCM, in turn, is responsible for the microtubule (MT) nucleation activity of centrosomes. Therefore, in order to assemble a functional bipolar mitotic spindle, a cell needs to control both centriole duplication and PCM recruitment. To date, however, the molecular mechanisms that govern these two processes still remain poorly understood. RESULTS: Here we show that SPD-2 is a novel component of the C. elegans centrosome. SPD-2 localizes to the centriole throughout the cell cycle and accumulates on the PCM during mitosis. We show that SPD-2 requires SPD-5 for its accumulation on the PCM and that in the absence of SPD-2, centrosome assembly fails. We further show that centriole duplication is also defective in spd-2(RNAi) embryos, but not in spd-5(RNAi) embryos, where PCM recruitment is efficiently blocked. CONCLUSIONS: Taken together, our results suggest that SPD-2 may link PCM recruitment and centriole duplication in C. elegans. SPD-2 shares homology with a human centrosome protein, suggesting that this key component of the C. elegans centrosome is evolutionarily conserved.  相似文献   
16.
17.
The ability of some ant species (including Camponotus spp.) to forage on vertebrate urine to extract urea may extend their niche in competitive and strongly nitrogen‐limited environments. We examined the preference of Camponotus terebrans, a sand‐dwelling ant widespread in southern Australia, for baits including urine, and the duration of their foraging on those baits. We baited ants with liquid stains of urine (human and kangaroo), urea in water (2.5%. 3.5%, 7.0%, 10.0%) and sucrose in water (20% and 40%) poured directly on the ground, as well as hard baits in plots drawn on sandy soil (Kangaroo Island, South Australia). We counted individuals of this mostly nocturnal species to determine their attraction to different baits for one month. We checked plant growth on the plots after nine and 13 months. Ants collected insects and meat; they foraged for at least 29 days on stains. Ants were most numerous on 10% urea, followed by 7% urea, 3.5% urea, urine (which contains ~2.5% urea) and 2.5% urea, 40% sucrose and 20% sucrose; sucrose was less attractive to them than equimolar urea bait. Ants were attracted to human, kangaroo, and unidentified urines, and they collected bird guano. Baits and ant foraging did not affect plant recruitment in plots. We observed incidentally Camponotus consobrinus foraging on urine, which may be a common resource for this genus at the site. The remarkable ability of C. terebrans to extract nitrogen from dry sand over weeks explains partly its success on sandy soils. Foraging on urine may be an important strategy to address nitrogen limitation on sandy soils and exploit commensally niches in which hosts are kangaroos, wallabies and other vertebrates. The understanding of plant–vertebrate interactions must factor in the role of ants as commensal organisms. Such ants could also reduce greenhouse gas emissions from urine.  相似文献   
18.
Journal of Bioenergetics and Biomembranes - S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases,...  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号