全文获取类型
收费全文 | 102篇 |
免费 | 13篇 |
专业分类
115篇 |
出版年
2023年 | 1篇 |
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 5篇 |
2017年 | 3篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 4篇 |
2013年 | 3篇 |
2012年 | 7篇 |
2011年 | 10篇 |
2010年 | 7篇 |
2009年 | 4篇 |
2008年 | 8篇 |
2007年 | 9篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2004年 | 6篇 |
2003年 | 4篇 |
2002年 | 1篇 |
2001年 | 4篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1991年 | 1篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
2.
We studied the effects of methanol, ethanol, iso-propanol, and n-propanol on the reaction of hemoglobin with oxygen at various temperatures. The analysis of the results in terms of the Monod-Wyman-Changeux model allowed determination of the overall contribution of the alcohols to the standard enthalpy and entropy differences between the T and R states of hemoglobin. A phenomenological approach allowed us to obtain separately the contributions related to the variations of the bulk dielectric constant of the solvent (bulk electrostatic contributions) and the contributions related to other effects (non-bulk-electrostatic contributions). The values of non-bulk-electrostatic contributions to ΔΔH and ΔΔS supported the suggestion that these contributions are mainly related to protein-solvent hydrophobic interactions. 相似文献
3.
Samuele Raccosta Mauro Manno Donatella Bulone Daniela Giacomazza Valeria Militello Vincenzo Martorana Pier Luigi San Biagio 《European biophysics journal : EBJ》2010,39(6):1007-1017
The formation of protein aggregates is important in many fields of life science and technology. The morphological and mechanical
properties of protein solutions depend upon the molecular conformation and thermodynamic and environmental conditions. Non-native
or unfolded proteins may be kinetically trapped into irreversible aggregates and undergo precipitation or gelation. Here,
we study the thermal aggregation of lysozyme in neutral solutions. We characterise the irreversible unfolding of lysozyme
by differential scanning calorimetry. The structural properties of aggregates and their mechanisms of formation with the eventual
gelation are studied at high temperature by spectroscopic, rheological and scattering techniques. The experiments show that
irreversible micron-sized aggregates are organised into larger clusters according to a classical mechanism of diffusion and
coagulation, which leads to a percolative transition at high concentrations. At a smaller length scale, optical and atomic
force microscopy images reveal the existence of compact aggregates, which are the origin of the aggregation irreversibility. 相似文献
4.
5.
Kinetics of insulin aggregation: disentanglement of amyloid fibrillation from large-size cluster formation 下载免费PDF全文
Kinetics of human insulin aggregation has been studied at pH 1.6 and 60 degrees C, when amyloid fibrils are formed. We developed a novel approach based on the analysis of scattered light intensity distribution, which allows distinguishing between small and large size aggregates. By this method, we observed an exponential growth of fibrillar aggregates implying a heterogeneous aggregation mechanism. Also, the apparent lag time observed, correlated with the major increase of thioflavin T fluorescence, has been assigned to the onset of large size cluster formation. 相似文献
6.
Maria Luisa Balestrieri Alfonso Giovane Lara Milone Francesca Felice Carmela Fiorito Valeria Crudele Annaclaudia Esposito Raffaele Rossiello Pellegrino Biagio Minucci Bartolomeo Farzati Luigi Servillo Claudio Napoli 《Journal of biochemical and molecular toxicology》2010,24(6):351-360
Exposure of human endothelial progenitor cells (EPCs) to tumor necrosis factor‐α (TNF‐α) reduced their number and biological activity. Yet, signal transduction events linked to TNF‐α action are still poorly understood. To address this issue, we examined the possible effect of fasudil and Y27632, two inhibitors of Rho kinase pathway, which is involved in endothelial dysfunction, atherosclerosis, and in‐ flammation. Results demonstrated that incubation with fasudil starting from 50 μM but not Y27632 determined a dose‐dependent improvement of EPC number during exposure to TNF‐α (P < 0.05 vs. TNF‐α alone). Analysis of the signal transduction pathway activated by TNF‐α revealed that the increased expression of p‐p38 was not significantly altered by fasudil. Instead, fasudil blocked the TNF‐α induced phosphorylation of Erk1/2 (P < 0.05 vs. TNF‐α) as well as the inhibitor of Erk1/2‐specific phosphorylated form, i.e., PD98059 (P < 0.05 vs. TNF‐α). These results were confirmed by analysis of these kinases by confocal microscopy. Finally, 2D‐DIGE and MALDI‐TOF/TOF analysis of EPCs treated with fasudil revealed increased expression levels of an actin‐related protein and an adenylyl cyclase associated protein and decreased expression levels of proteins related to radical scavenger and nucleotide metabolism. These findings suggest that fasudil positively affects EPC number and that other major signals might take part to this complex pathway. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:351–360, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20345 相似文献
7.
A structural transition is reported to occur in aqueous sols of agarose, an electrically uncharged biostructural polysaccharide. The transition has no measurable effect on size dispersity on the shape of the solute polysaccharide as observed by precision photon correlation spectroscopy. It originates a low-angle pattern of scattered light similar to that which monitors phase separations in polymer blends. Thus, it must be due to some extent to spatially modulated polymer clustering, typical of spinodal decomposition. In the interval of temperatures studied, it precedes very distinctly in time the thermoreversible sol–gel transition, which is known to be promoted at higher concentrations. It also anticipates to an appreciable extent the spatial density modulation observed in the gel. Although reported here for the first time, a spinodal decomposition of the sol that precedes and possibly triggers the processes leading to gelation does not come unexpectedly in terms of site-bond correlated-percolation theory. In general, this occurrence raises the question as to whether the spontaneous onset of regions of higher and lower polymer concentration (spinodal separation) may be regarded as a novel path for biomolecular interactions and the self-assembly of order in biomolecular systems. 相似文献
8.
Monica Muratori Lara Tamburrino Sara Marchiani Marta Cambi Biagio Olivito Chiara Azzari Gianni Forti Elisabetta Baldi 《Molecular medicine (Cambridge, Mass.)》2015,21(1):109-122
Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2′-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. 相似文献
9.
Federica Bozzano Chiara Dentone Carola Perrone Antonio Di Biagio Daniela Fenoglio Alessia Parodi Malgorzata Mikulska Bianca Bruzzone Daniele Roberto Giacobbe Antonio Vena Lucia Taramasso Laura Nicolini Nicol Patroniti Paolo Pelosi Angelo Gratarola Raffaele De Palma Gilberto Filaci Matteo Bassetti Andrea De Maria 《PLoS pathogens》2021,17(4)
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5–20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19.Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and “memory” KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells.Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches. 相似文献
10.
De Felice M Esposito L Pucci B Carpentieri F De Falco M Rossi M Pisani FM 《The Journal of biological chemistry》2003,278(47):46424-46431
Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function. 相似文献