首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   37篇
  国内免费   1篇
  2023年   14篇
  2022年   23篇
  2021年   50篇
  2020年   18篇
  2019年   27篇
  2018年   36篇
  2017年   26篇
  2016年   47篇
  2015年   68篇
  2014年   52篇
  2013年   64篇
  2012年   61篇
  2011年   55篇
  2010年   25篇
  2009年   19篇
  2008年   29篇
  2007年   18篇
  2006年   14篇
  2005年   6篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  1997年   1篇
排序方式: 共有672条查询结果,搜索用时 15 毫秒
131.
Alcohol abuse affects several neurological pathways and causes significant alterations in the brain. Abstention from alcohol causes only a marginal decrease in oxidative stress and neuro inflammation. Our previous studies had shown that an active metabolite of vitamin A, all trans retinoic acid (ATRA), ameliorates alcohol induced toxicity. Hence in the present study we investigated whether ATRA regressed alcohol induced neuroinflammation. We focused on the role of silent mating type information regulation 2 homolog 1(SIRT1) and nuclear factor kappa-B (NFκB). Animals were administered with ethanol at a daily dose of (4 g/kg body weight) for 90 days. On the 91st day ethanol administration was stopped and animals were divided into ethanol abstention (A) and ATRA supplementation group (ATRA?+?A) (100 µg/kg body weight) and maintained for 30 days. Ethanol exposure increased markers of oxidative stress, inflammation and the activities of alcohol and acetaldehyde dehydrogenases and reduced the expression of SIRT1 in the whole brain.The ethanol induced altered expressions of NFκB and SIRT1 were modulated by supplementation of ATRA. Abstention also reduced toxicity, but to a lower extent in comparison with supplementation of ATRA. Our results seemed to suggest that ATRA regressed the mediators of ethanol induced neuroinflammation by reducing oxidative stress and by regulating the expression of NFκB and SIRT1. The ameliorative potential of ATRA was much higher than abstention.  相似文献   
132.
Triple-negative breast cancer (TNBC) is often aggressive and metastatic. Transforming growth factor-β acts as a tumor-promoter in TNBC. Smad3, a major downstream effector protein in the TGF-β signaling pathway, is regulated by phosphorylation at several sites. The functional significance of the phosphorylation of the linker region in Smad3 is poorly understood for TNBC. Among the four sites in the Smad3 linker region, threonine-179 (T179) appears to be unique as it serves as the binding site for multiple WW-domain-containing proteins upon phosphorylation, suggesting that this phosphorylation is a key for Smad3 to engage other pathways.Using genome editing, we introduced for the first time a knock-in (KI) mutation in the endogenous Smad3 gene in IV2, a lung-tropic subline of the human MDA-MB-231 TNBC cell line. In the resulting cell line, the Smad3 T179 phosphorylation site is replaced by non-phosphorylatable valine (T179V) with the mutation in both alleles.The T179V KI reduced cell growth rate and mammosphere formation. These phenomena were accompanied by a significant upregulation of p21Cip1 and downregulation of c-Myc. The T179V KI also reduced cell migration and invasion in vitro. In the mouse xenograft models, the T179V KI markedly reduced the establishment of primary tumor in the mammary fat pad and the lung metastasis.Our results using gene editing indicate the cancer-promoting role of Smad3 T179 phosphorylation in the human TNBC cells. Our findings highly suggest that controlling this phosphorylation may have therapeutic potential for TNBC.  相似文献   
133.
Plant growth-promoting rhizobacteria (PGPR) have demonstrated its importance in agriculture globally including beneficial dynamics change in plant rhizosphere leading better tolerance towards abiotic stresses. Hundred and one bacterial cultures from sugarcane rhizosphere zone of >?50 years of sugarcane growing fields were isolated using standard protocols and were further subjected to in vitro screening to visualize their impact on plant growth. Of these, two cultures based on biochemical test and 16S rRNA gene sequences were classified as Bacillus subtilis (BSSC11) and Bacillus megaterium (BMSE7). Sugarcane settlings exposed to these strains exhibited more nutrient content, improved growth in terms of early sprouting, increased vigor (high shoot and root weight) and better antioxidant enzyme system ability including quantitative overexpression of superoxide dismutase (SOD) isoforms over controls. Treated cane seed (setts) with B. megaterium culture exhibited high expression of invertase genes which facilitated early and improved growth of settlings through increased inversion of sucrose to glucose and fructose. When these settlings were exposed to drought, a significant decrease in SOD enzyme activity and increase in proline content was observed especially in B. megaterium-exposed samples indicating less generation of free radicals in inoculated than those of non-inoculated samples where SOD activity increased significantly. This is apparently a first study of PGPRs isolated from continuous growing sugarcane fields on the growth and vigor of sugarcane settlings in vivo and further hypothesized that a multiple chain of events is involved in imparting better crop growth of PGPR-exposed settlings both under normal and stress conditions.  相似文献   
134.
135.
136.
137.
138.
139.
140.
The present study was aimed to investigate the effect of nerolidol on the development of kindling and associate oxidative stress and behavioral comorbidities. Kindling was induced by repeated injections of a sub-convulsive dose of pentylenetetrazol (PTZ-35 mg/kg; i.p.), at an interval of 48?±?2 h for 43 days (21 injections). Nerolidol was administered daily in three doses (12.5, 25 and 50 mg/kg) along with alternate day PTZ injection. To access behavioral comorbidities, animals were subjected to tail suspension test (TST) and passive shock avoidance (PSA) test to evaluate the associated depression and memory impairment respectively on the last day of PTZ administration. Following behavioral assessment, neurotransmitter level and oxidative stress markers were evaluated in brain. The results showed that nerolidol significantly suppressed the progression of kindling. Also, nerolidol ameliorates the kindling associated depression and memory impairment as indicated by decreased immobility time and increased step down latency, respectively, as compared to vehicle control animals. Further, these behavioral observations were complimented with corresponding neurochemical and oxidative stress markers changes. In conclusion, the results of present study showed that nerolidol treatment has protective effect against PTZ-induced kindling and associated oxidative stress and behavioral comorbidities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号